Pell and Pell–Lucas Numbers with Applications


Book Description

Pell and Pell–Lucas numbers, like the well-known Fibonacci and Catalan numbers, continue to intrigue the mathematical world with their beauty and applicability. They offer opportunities for experimentation, exploration, conjecture, and problem-solving techniques, connecting the fields of analysis, geometry, trigonometry, and various areas of discrete mathematics, number theory, graph theory, linear algebra, and combinatorics. Pell and Pell–Lucas numbers belong to an extended Fibonacci family as a powerful tool for extracting numerous interesting properties of a vast array of number sequences. A key feature of this work is the historical flavor that is interwoven into the extensive and in-depth coverage of the subject. An interesting array of applications to combinatorics, graph theory, geometry, and intriguing mathematical puzzles is another highlight engaging the reader. The exposition is user-friendly, yet rigorous, so that a broad audience consisting of students, math teachers and instructors, computer scientists and other professionals, along with the mathematically curious will all benefit from this book. Finally, Pell and Pell–Lucas Numbers provides enjoyment and excitement while sharpening the reader’s mathematical skills involving pattern recognition, proof-and-problem-solving techniques.​




Catalan Numbers with Applications


Book Description

This book presents a clear and comprehensive introduction to one of the truly fascinating topics in mathematics: Catalan numbers. They crop up in chess, computer programming and even train tracks. In addition to lucid descriptions of the mathematics and history behind Catalan numbers, Koshy includes short biographies of the prominent mathematicians who have worked with the numbers.




Fibonacci and Lucas Numbers, and the Golden Section


Book Description

This survey of the use of Fibonacci and Lucas numbers and the ancient principle of the Golden Section covers areas relevant to operational research, statistics, and computational mathematics. 1989 edition.




Triangular Arrays with Applications


Book Description

This is the first text to collect and organize the current research on triangular arrays and their applications. An invaluable resource book, it gives a historical introduction to Pascal's triangle and covers application topics such as binomial coefficients, figurate numbers, Fibonacci and Lucas numbers, Pell and Pell-Lucas numbers, graph theory, Fibonomial and tribinomial coefficients and Fibonacci and Lucas polynomials.




Fibonacci and Lucas Numbers with Applications, Volume 2


Book Description

Volume II provides an advanced approach to the extended gibonacci family, which includes Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas, Vieta, Vieta-Lucas, and Chebyshev polynomials of both kinds. This volume offers a uniquely unified, extensive, and historical approach that will appeal to both students and professional mathematicians. As in Volume I, Volume II focuses on problem-solving techniques such as pattern recognition; conjecturing; proof-techniques, and applications. It offers a wealth of delightful opportunities to explore and experiment, as well as plentiful material for group discussions, seminars, presentations, and collaboration. In addition, the material covered in this book promotes intellectual curiosity, creativity, and ingenuity. Volume II features: A wealth of examples, applications, and exercises of varying degrees of difficulty and sophistication. Numerous combinatorial and graph-theoretic proofs and techniques. A uniquely thorough discussion of gibonacci subfamilies, and the fascinating relationships that link them. Examples of the beauty, power, and ubiquity of the extended gibonacci family. An introduction to tribonacci polynomials and numbers, and their combinatorial and graph-theoretic models. Abbreviated solutions provided for all odd-numbered exercises. Extensive references for further study. This volume will be a valuable resource for upper-level undergraduates and graduate students, as well as for independent study projects, undergraduate and graduate theses. It is the most comprehensive work available, a welcome addition for gibonacci enthusiasts in computer science, electrical engineering, and physics, as well as for creative and curious amateurs.




Discrete Mathematics with Applications


Book Description

This approachable text studies discrete objects and the relationsips that bind them. It helps students understand and apply the power of discrete math to digital computer systems and other modern applications. It provides excellent preparation for courses in linear algebra, number theory, and modern/abstract algebra and for computer science courses in data structures, algorithms, programming languages, compilers, databases, and computation.* Covers all recommended topics in a self-contained, comprehensive, and understandable format for students and new professionals * Emphasizes problem-solving techniques, pattern recognition, conjecturing, induction, applications of varying nature, proof techniques, algorithm development and correctness, and numeric computations* Weaves numerous applications into the text* Helps students learn by doing with a wealth of examples and exercises: - 560 examples worked out in detail - More than 3,700 exercises - More than 150 computer assignments - More than 600 writing projects* Includes chapter summaries of important vocabulary, formulas, and properties, plus the chapter review exercises* Features interesting anecdotes and biographies of 60 mathematicians and computer scientists* Instructor's Manual available for adopters* Student Solutions Manual available separately for purchase (ISBN: 0124211828)




Fibonacci and Lucas Numbers with Applications


Book Description

The first comprehensive survey of mathematics' most fascinatingnumber sequences Fibonacci and Lucas numbers have intrigued amateur and professionalmathematicians for centuries. This volume represents the firstattempt to compile a definitive history and authoritative analysisof these famous integer sequences, complete with a wealth ofexciting applications, enlightening examples, and fun exercisesthat offer numerous opportunities for exploration andexperimentation. The author has assembled a myriad of fascinating properties of bothFibonacci and Lucas numbers-as developed by a wide range ofsources-and catalogued their applications in a multitude of widelyvaried disciplines such as art, stock market investing,engineering, and neurophysiology. Most of the engaging anddelightful material here is easily accessible to college and evenhigh school students, though advanced material is included tochallenge more sophisticated Fibonacci enthusiasts. A historicalsurvey of the development of Fibonacci and Lucas numbers,biographical sketches of intriguing personalities involved indeveloping the subject, and illustrative examples round out thisthorough and amusing survey. Most chapters conclude with numericand theoretical exercises that do not rely on long and tediousproofs of theorems. Highlights include: * Balanced blend of theory and real-world applications * Excellent reference material for student reports andprojects * User-friendly, informal, and entertaining writing style * Historical interjections and short biographies that add a richerperspective to the topic * Reference sections providing important symbols, problemsolutions, and fundamental properties from the theory of numbersand matrices Fibonacci and Lucas Numbers with Applications providesmathematicians with a wealth of reference material in oneconvenient volume and presents an in-depth and entertainingresource for enthusiasts at every level and from any background.




Applications of Fibonacci Numbers


Book Description

This book contains 33 papers from among the 41 papers presented at the Eighth International Conference on Fibonacci Numbers and Their Applications which was held at the Rochester Institute of Technology, Rochester, New York, from June 22 to June 26, 1998. These papers have been selected after a careful review by well known referees in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers and recurrence relations are their unifying bond. It is anticipated that this book, like its seven predecessors, will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. June 1, 1999 The Editor F. T. Howard Mathematics and Computer Science Wake Forest University Box 7388 Reynolda Station Winston-Salem, NC USA xvii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERNATIONAL COMMITTEE Anderson, Peter G. , Chairman Horadam, A. F. (Australia), Co-Chair Arpaya, Pasqual Philippou, A. N. (Cyprus), Co-Chair Biles, John Bergum, G. E. (U. S. A. ) Orr, Richard Filipponi, P. (Italy) Radziszowski, Stanislaw Harborth, H. (Germany) Rich, Nelson Horibe, Y. (Japan) Howard, F. (U. S. A. ) Johnson, M. (U. S. A. ) Kiss, P. (Hungary) Phillips, G. M. (Scotland) Turner, J. (New Zealand) Waddill, M. E. (U. S. A. ) xix LIST OF CONTRIBUTORS TO THE CONFERENCE AGRATINI, OCTAVIAN, "Unusual Equations in Study. " *ANDO, SHIRO, (coauthor Daihachiro Sato), "On the Generalized Binomial Coefficients Defined by Strong Divisibility Sequences. " *ANATASSOVA, VASSIA K. , (coauthor J. C.




Elementary Number Theory with Applications


Book Description

This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East




Elementary Number Theory with Programming


Book Description

A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.