Performance-driven Chip Floorplanning and Global Routing


Book Description

Abstract: "In this thesis algorithms for solving performance- driven chip floorplanning and global routing problems in physical VLSI design are presented. Interconnection delays are estimated and directly incorporated into the problem formulations. A timing analysis provides timing information consisting of a set of potentially critical paths and the delay slacks of the signal nets. This information is used to maintain path delays within bounds and to minimize the delay of the most critical path, while satisfying other geometrical design constraints and objectives. This performance-driven chip floorplanning methodology starts by assigning off-chip I/O's to I/O pads on the periphery of the chip.




VLSI Physical Design: From Graph Partitioning to Timing Closure


Book Description

The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota




VLSI Physical Design: From Graph Partitioning to Timing Closure


Book Description

Design and optimization of integrated circuits are essential to the creation of new semiconductor chips, and physical optimizations are becoming more prominent as a result of semiconductor scaling. Modern chip design has become so complex that it is largely performed by specialized software, which is frequently updated to address advances in semiconductor technologies and increased problem complexities. A user of such software needs a high-level understanding of the underlying mathematical models and algorithms. On the other hand, a developer of such software must have a keen understanding of computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. "VLSI Physical Design: From Graph Partitioning to Timing Closure" introduces and compares algorithms that are used during the physical design phase of integrated-circuit design, wherein a geometric chip layout is produced starting from an abstract circuit design. The emphasis is on essential and fundamental techniques, ranging from hypergraph partitioning and circuit placement to timing closure.







Essential Issues in SOC Design


Book Description

This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, it covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.




Routing Congestion in VLSI Circuits


Book Description

This volume provides a complete understanding of the fundamental causes of routing congestion in present-day and next-generation VLSI circuits, offers techniques for estimating and relieving congestion, and provides a critical analysis of the accuracy and effectiveness of these techniques. The book includes metrics and optimization techniques for routing congestion at various stages of the VLSI design flow. The subjects covered include an explanation of why the problem of congestion is important and how it will trend, plus definitions of metrics that are appropriate for measuring congestion, and descriptions of techniques for estimating and optimizing routing congestion issues in cell-/library-based VLSI circuits.










Field-Programmable Logic and Applications. From FPGAs to Computing Paradigm


Book Description

This book constitutes the refereed proceedings of the 8th International Workshop on Field-Programmable Logics and Applications, FPL '98, held in Tallinn, Estonia, in August/September 1998. The 39 revised full papers presented were carefully selected for inclusion in the book from a total of 86 submissions. Also included are 30 refereed high-quality posters. The papers are organized in topical sections on design methods, general aspects, prototyping and simulation, development methods, accelerators, system architectures, hardware/software codesign, system development, algorithms on FPGAs, and applications.




Field-Programmable Logic and Applications. From FPGAs to Computing Paradigm


Book Description

This book constitutes the refereed proceedings of the 8th International Workshop on Field-Programmable Logics and Applications, FPL '98, held in Tallinn, Estonia, in August/September 1998. The 39 revised full papers presented were carefully selected for inclusion in the book from a total of 86 submissions. Also included are 30 refereed high-quality posters. The papers are organized in topical sections on design methods, general aspects, prototyping and simulation, development methods, accelerators, system architectures, hardware/software codesign, system development, algorithms on FPGAs, and applications.