Performance of new GNSS satellite clocks


Book Description

In Global Navigation Satellite Systems (GNSS), the on-board clocks are a key component from which timing and navigation signals are generated. This thesis reviews the performance of the first Passive Hydrogen Maser (PHM) launched by the Galileo system in 2008; and demonstrates how the new PHM can be consider as the best clock in space, pushing the physical clock error contribution below the noise floor of geodetic time transfer capabilities. Furthermore, overall GNSS clock peformance is reviewed




Springer Handbook of Global Navigation Satellite Systems


Book Description

This Handbook presents a complete and rigorous overview of the fundamentals, methods and applications of the multidisciplinary field of Global Navigation Satellite Systems (GNSS), providing an exhaustive, one-stop reference work and a state-of-the-art description of GNSS as a key technology for science and society at large. All global and regional satellite navigation systems, both those currently in operation and those under development (GPS, GLONASS, Galileo, BeiDou, QZSS, IRNSS/NAVIC, SBAS), are examined in detail. The functional principles of receivers and antennas, as well as the advanced algorithms and models for GNSS parameter estimation, are rigorously discussed. The book covers the broad and diverse range of land, marine, air and space applications, from everyday GNSS to high-precision scientific applications and provides detailed descriptions of the most widely used GNSS format standards, covering receiver formats as well as IGS product and meta-data formats. The full coverage of the field of GNSS is presented in seven parts, from its fundamentals, through the treatment of global and regional navigation satellite systems, of receivers and antennas, and of algorithms and models, up to the broad and diverse range of applications in the areas of positioning and navigation, surveying, geodesy and geodynamics, and remote sensing and timing. Each chapter is written by international experts and amply illustrated with figures and photographs, making the book an invaluable resource for scientists, engineers, students and institutions alike.




Rubidium Atomic Clock: The Workhorse Of Satellite Navigation


Book Description

The Rubidium atomic clock (Rb) is the workhorse of the satellite navigation systems of which GPS is now a household name. With just the tap of a few keys, drivers and navigators all over the world are able to reach their destination effortlessly with high precision. People are now curious to know what makes this possible. Hence, the need to explain in simplistic terms the Rb atomic clocks that are onboard these satellite navigation systems because no good satellite navigation system is possible without such clocks.But why only Rb atomic clocks when far better and exotic atomic clocks are available? The reasons are as simple as that they are slim, low in weight, easy to build inexpensively. They are also used in numerous military applications such as secure communications, electronic warfare, command and control, telemetry and navigation. Besides, they are used in the measurements of the variation in fine-structure constant, test of relativity, precise spectroscopy and scientific research.This book details the history of time keeping and the chronological development of the Rb atomic clocks, with special focus on the physics Package that accounts for the actual performance of the clock. Researchers and industrialists will find that producing such clocks is relatively simple and inexpensive.




Position, Navigation, and Timing Technologies in the 21st Century


Book Description

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com




Global Navigation Satellite Systems


Book Description

The Global Positioning System (GPS) has revolutionized the measurement of position, velocity, and time. It has rapidly evolved into a worldwide utility with more than a billion receiver sets currently in use that provide enormous benefits to humanity: improved safety of life, increased productivity, and wide-spread convenience. Global Navigation Satellite Systems summarizes the joint workshop on Global Navigation Satellite Systems held jointly by the U.S. National Academy of Engineering and the Chinese Academy of Engineering on May 24-25, 2011 at Hongqiao Guest Hotel in Shanghai, China. "We have one world, and only one set of global resources. It is important to work together on satellite navigation. Competing and cooperation is like Yin and Yang. They need to be balanced," stated Dr. Charles M. Vest, President of the National Academy of Engineering, in the workshop's opening remarks. Global Navigation Satellite Systems covers the objectives of the workshop, which explore issues of enhanced interoperability and interchangeability for all civil users aimed to consider collaborative efforts for countering the global threat of inadvertent or illegal interference to GNSS signals, promotes new applications for GNSS, emphasizing productivity, safety, and environmental protection. The workshop featured presentations chosen based on the following criteria: they must have relevant engineering/technical content or usefulness; be of mutual interest; offer the opportunity for enhancing GNSS availability, accuracy, integrity, and/or continuity; and offer the possibility of recommendations for further actions and discussions. Global Navigation Satellite Systems is an essential report for engineers, workshop attendees, policy makers, educators, and relevant government agencies.




Position, Navigation, and Timing Technologies in the 21st Century, Volumes 1 and 2


Book Description

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com




BKG Ntrip Client (BNC)


Book Description




Observing our Changing Earth


Book Description

At the XXIV General Assembly of the International Union of Geodesy and Geophysics (IUGG), held July 2-13, 2007 in Perugia, Italy, the International As- ciation of Geodesy (IAG) also had its quadrennial General Assembly. The IAG - organized and contributed to several Union Symposia, as well as to Joint Symposia with other Associations. It also organized ve Symposia of its own, one dedicated to eachofitsfourCommissionsanda fthonededicatedtotheGlobalGeodeticObse- ing System (GGOS). This volume contains the proceedings of these ve Symposia, which are listed below: Symposium GS001: Reference Frames Convener: H. Drewes Co-convener: A. Dermanis Symposium GS002: Gravity Field Convener: C. Jekeli Co-conveners: U. Marti, S. Okubo, N. Sneeuw, I. Tziavos, G. Vergos, M. Vermeer, P. Visser Symposium GS003: Earth Rotation and Geodynamics Convener: V. Dehant Co-convener: Chengli Huang Symposium GS004: Positioning and Applications Convener: C. Rizos Co-convener: S. Verhagen Symposium GS005: The Global Geodetic Observing System (GGOS) Conveners: M. Rothacher Co-conveners: R. Neilan, H.-P. Plag The Symposia were organized based on the structure of the IAG (i. e., one per Commission) and covered the there pillars of geodesy, namely geometry, Earth ro- tion, and gravity eld, plus their applications. The inclusion of the Symposium on GGOS - which is no longer a project but a major component of the IAG - integrated all geodetic areas and highlighted the importance of multidisciplinarity in, and for, geodetic research.




The Interoperable Global Navigation Satellite Systems Space Service Volume


Book Description

The availability and performance of global navigation satellite systems (GNSS) signals at high altitude is documented as the GNSS Space Service Volume (SSV). While different definitions of the SSV exist and may continue to exist for the different service providers, within the context of this booklet it is defined as the region of space between 3,000 km and 36,000 km above the Earth's surface, which is the geostationary altitude. For space users located at low altitudes (below 3,000 km), the GNSS signal reception is similar to that for terrestrial users and can be conservatively derived from the results presented for the lower SSV in this booklet.