Bacteriophages


Book Description

This first major reference work dedicated to the mannifold industrial and medical applications of bacteriophages provides both theoretical and practical insights into the emerging field of bacteriophage biotechnology. The book introduces to bacteriophage biology, ecology and history and reviews the latest technologies and tools in bacteriophage detection, strain optimization and nanotechnology. Usage of bacteriophages in food safety, agriculture, and different therapeutic areas is discussed in detail. This book serves as essential guide for researchers in applied microbiology, biotechnology and medicine coming from both academia and industry.




Bacteriophage Therapy


Book Description

This volume details the experimental approaches suitable for isolating and characterizing bacteriophages to formulating bacteriophage medicinal products and clinical application. Chapters guide readers through regulatory compliance and safety aspects of bacteriophage therapy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Bacteriophage Therapy: From Lab to Clinical Practice aims to ensure successful results in the further study of this vital field.




Bacteriophages


Book Description

In response to the emergence of pathogenic bacteria that cannot be treated with current antibiotics, many researchers are revisiting the use of bacteriophages, or phages, to fight multidrug-resistant bacteria. Bacteriophages: Biology and Applications provides unparalleled, comprehensive information on bacteriophages and their applications, such as phage therapy. It offers techniques, media, and methodology involved in isolating and working with therapeutic phages. Photographs, line drawings, and electron micrographs of phages are also included. With its broad approach, this book is a useful reference for microbiologists, hematologists, and infectious disease researchers.




Bacteriophages in Health and Disease


Book Description

Bacteriophages are viruses that infect bacteria; as such, they have many potential uses for promoting health and combating disease. This book covers the many facets of phage-bacterial-human interaction in three sections: the role and impact of phages on natural bacterial communities, the potential to develop phage-based therapeutics and other aspects in which phages can be used to combat disease, including bacterial detection, bacterial epidemiology, the tracing of fecal contamination of water and decontamination of foods.




Phage Therapy: A Practical Approach


Book Description

This book gives a detailed yet clear insight into the current state of the art of the therapeutic application of bacteriophages in different conditions. The authors bring in their practical expertise within their respective fields of expertise and provide an excellent overview of the potential and actual use of phage therapy. Topics like economic feasibility compared to traditional antibiotics and also regulatory issues are discussed in far detail. This new volume is therefore a valuable resource for individuals engaged in the medical application of novel phage therapies.




Phage Therapy: Past, Present and Future


Book Description

Historically, the first observation of a transmissible lytic agent that is specifically active against a bacterium (Bacillus anthracis) was by a Russian microbiologist Nikolay Gamaleya in 1898. At that time, however, it was too early to make a connection to another discovery made by Dmitri Ivanovsky in 1892 and Martinus Beijerinck in 1898 on a non-bacterial pathogen infecting tobacco plants. Thus the viral world was discovered in two of the three domains of life, and our current understanding is that viruses represent the most abundant biological entities on the planet. The potential of bacteriophages for infection treatment have been recognized after the discoveries by Frederick Twort and Felix d’Hérelle in 1915 and 1917. Subsequent phage therapy developments, however, have been overshadowed by the remarkable success of antibiotics in infection control and treatment, and phage therapy research and development persisted mostly in the former Soviet Union countries, Russia and Georgia, as well as in France and Poland. The dramatic rise of antibiotic resistance and especially of multi-drug resistance among human and animal bacterial pathogens, however, challenged the position of antibiotics as a single most important pillar for infection control and treatment. Thus there is a renewed interest in phage therapy as a possible additive/alternative therapy, especially for the infections that resist routine antibiotic treatment. The basis for the revival of phage therapy is affected by a number of issues that need to be resolved before it can enter the arena, which is traditionally reserved for antibiotics. Probably the most important is the regulatory issue: How should phage therapy be regulated? Similarly to drugs? Then the co-evolving nature of phage-bacterial host relationship will be a major hurdle for the production of consistent phage formulae. Or should we resort to the phage products such as lysins and the corresponding engineered versions in order to have accurate and consistent delivery doses? We still have very limited knowledge about the pharmacodynamics of phage therapy. More data, obtained in animal models, are necessary to evaluate the phage therapy efficiency compared, for example, to antibiotics. Another aspect is the safety of phage therapy. How do phages interact with the immune system and to what costs, or benefits? What are the risks, in the course of phage therapy, of transduction of undesirable properties such as virulence or antibiotic resistance genes? How frequent is the development of bacterial host resistance during phage therapy? Understanding these and many other aspects of phage therapy, basic and applied, is the main subject of this Topic.




Phages


Book Description

provides comprehensive and accessible information in following areas: phage-bacteria interactions including: lysogeny, lysogenic conversion, and phage directed host cell lysis; phage regulatory circuits that control virulence gene expression; evolutionary forces in selection and maintenance of phages bearing virulence genes; phage contributions to pathogenicity of E. coli, Salmonella, Mycobacteria, Vibrio, Bordetella, Corynebacterium, Staphylococcus, Streptococcus, Pneumococcus, Mycoplasma, and Listeria; applied phage technologies, including high frequency recombination and phage display; critical analysis of phage therapy.




The Perfect Predator


Book Description

An electrifying memoir of one woman's extraordinary effort to save her husband's life-and the discovery of a forgotten cure that has the potential to save millions more. "A memoir that reads like a thriller." -New York Times Book Review "A fascinating and terrifying peek into the devastating outcomes of antibiotic misuse-and what happens when standard health care falls short." -Scientific American Epidemiologist Steffanie Strathdee and her husband, psychologist Tom Patterson, were vacationing in Egypt when Tom came down with a stomach bug. What at first seemed like a case of food poisoning quickly turned critical, and by the time Tom had been transferred via emergency medevac to the world-class medical center at UC San Diego, where both he and Steffanie worked, blood work revealed why modern medicine was failing: Tom was fighting one of the most dangerous, antibiotic-resistant bacteria in the world. Frantic, Steffanie combed through research old and new and came across phage therapy: the idea that the right virus, aka "the perfect predator," can kill even the most lethal bacteria. Phage treatment had fallen out of favor almost 100 years ago, after antibiotic use went mainstream. Now, with time running out, Steffanie appealed to phage researchers all over the world for help. She found allies at the FDA, researchers from Texas A&M, and a clandestine Navy biomedical center -- and together they resurrected a forgotten cure. A nail-biting medical mystery, The Perfect Predator is a story of love and survival against all odds, and the (re)discovery of a powerful new weapon in the global superbug crisis.




Biocommunication of Phages


Book Description

This is the first book to systemize all levels of communicative behavior of phages. Phages represent the most diverse inhabitants on this planet. Until today they are completely underestimated in their number, skills and competences and still remain the dark matter of biology. Phages have serious effects on global energy and nutrient cycles. Phages actively compete for host. They can distinguish between ‘self’ and ‘non-self’ (complement same, preclude others). They process and evaluate available information and then modify their behaviour accordingly. These diverse competences show us that this capacity to evaluate information is possible owing to communication processes within phages (intra-organismic), between the same, related and different phage species (interorganismic), and between phages and non-phage organisms (transorganismic). This is crucial in coordinating infection strategies (lytic vs. lysogenic) and recombination in phage genomes. In 22 chapters, expert contributors review current research into the varying forms of phage biocommunication and Phagetherapy. Biocommunication of Phages aims to assess the current state of research, to orient further investigations on how phages communicate with each other to coordinate their behavioral patterns, and to inspire further investigation of the role of non-phage viruses (non-lytic, non-prokaryotic) in these highly dynamic interactional networks.




Bacteriophages and Biofilms


Book Description

Bacteriophages (phages) are the viruses of bacteria and biofilms that represent a frequent niche for bacteria, where they are embedded in extensive extracellular polymeric substances (EPS) and can be structured into complex microcolonies. As a consequence of the resulting spatial structure and heterogeneity, phage-bacterial interactions within biofilms can be more complicated than those between phages and planktonic bacteria. This book presents and discusses research which provides a better understanding of the biology of phages interacting with biofilms.




Recent Books