Geologic Carbon Sequestration


Book Description

This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.




Well Completion Design


Book Description

Completions are the conduit between hydrocarbon reservoirs and surface facilities. They are a fundamental part of any hydrocarbon field development project. The have to be designed for safely maximising the hydrocarbon recovery from the well and may have to last for many years under ever changing conditions. Issues include: connection with the reservoir rock, avoiding sand production, selecting the correct interval, pumps and other forms of artificial lift, safety and integrity, equipment selection and installation and future well interventions. - Course book based on course well completion design by TRACS International - Unique in its field: Coverage of offshore, subsea, and landbased completions in all of the major hydrocarbon basins of the world - Full colour




Geological Storage of Carbon Dioxide (CO2)


Book Description

Geological storage and sequestration of carbon dioxide, in saline aquifers, depleted oil and gas fields or unminable coal seams, represents one of the most important processes for reducing humankind's emissions of greenhouse gases. Geological storage of carbon dioxide (CO2) reviews the techniques and wider implications of carbon dioxide capture and storage (CCS).Part one provides an overview of the fundamentals of the geological storage of CO2. Chapters discuss anthropogenic climate change and the role of CCS, the modelling of storage capacity, injectivity, migration and trapping of CO2, the monitoring of geological storage of CO2, and the role of pressure in CCS. Chapters in part two move on to explore the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and public engagement in projects, and the legal framework for CCS. Finally, part three focuses on a variety of different projects and includes case studies of offshore CO2 storage at Sleipner natural gas field beneath the North Sea, the CO2CRC Otway Project in Australia, on-shore CO2 storage at the Ketzin pilot site in Germany, and the K12-B CO2 injection project in the Netherlands.Geological storage of carbon dioxide (CO2) is a comprehensive resource for geoscientists and geotechnical engineers and academics and researches interested in the field. - Reviews the techniques and wider implications of carbon dioxide capture and storage (CCS) - An overview of the fundamentals of the geological storage of CO2 discussing the modelling of storage capacity, injectivity, migration and trapping of CO2 among other subjects - Explores the environmental, social and regulatory aspects of CCS including CO2 leakage from geological storage facilities, risk assessment of CO2 storage complexes and the legal framework for CCS




How to Store CO2 Underground: Insights from early-mover CCS Projects


Book Description

This book introduces the scientific basis and engineering practice for CO2 storage, covering topics such as storage capacity, trapping mechanisms, CO2 phase behaviour and flow dynamics, engineering and geomechanics of geological storage, injection well design, and geophysical and geochemical monitoring. It also provides numerous examples from the early mover CCS projects, notably Sleipner and Snøhvit offshore Norway, as well as other pioneering CO2 storage projects.




Negative Emissions Technologies and Reliable Sequestration


Book Description

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.




Climate Intervention


Book Description

The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.




Carbon Dioxide Sequestration in Geological Media


Book Description

Over the past 20 years, the concept of storing or permanently storing carbon dioxide in geological media has gained increasing attention as part of the important technology option of carbon capture and storage within a portfolio of options aimed at reducing anthropogenic emissions of greenhouse gases to the earths atmosphere. This book is structured into eight parts, and, among other topics, provides an overview of the current status and challenges of the science, regional assessment studies of carbon dioxide geological sequestration potential, and a discussion of the economics and regulatory aspects of carbon dioxide sequestration.




Carbon Dioxide Sequestration and Related Technologies


Book Description

Carbon dioxide sequestration is a technology that is being explored to curb the anthropogenic emission of CO2 into the atmosphere. Carbon dioxide has been implicated in the global climate change and reducing them is a potential solution. The injection of carbon dioxide for enhanced oil recovery (EOR) has the duel benefit of sequestering the CO2 and extending the life of some older fields. Sequestering CO2 and EOR have many shared elements that make them comparable. This volume presents some of the latest information on these processes covering physical properties, operations, design, reservoir engineering, and geochemistry for AGI and the related technologies.




Geological Carbon Storage


Book Description

Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.