Phase Diagrams and Kinetics of Solid-liquid Phase Transitions in Crystalline Polymer Blends


Book Description

"A free energy functional has been formulated based on an order parameter approach to describe the competition between liquid-liquid phase separation and solid-liquid phase separation. In the free energy description, the assumption of complete solvent rejection from the crystalline phase that is inherent in the Flory diluent theory was removed as solvent has been found to reside in the crystalline phase in the form of intercalates. Using this approach, we have calculated various phase diagrams in binary blends of crystalline and amorphous polymers that show upper or lower critical solution temperature. Also, the discrepancy in the X values obtained from different experimental methods reported in the literature for the polymer blend of poly(vinylidenefluoride) and poly(methylmethacrylate) has been discussed in the context of the present model. Experimental phase diagram for the polymer blend of poly(caprolactone) and polystyrene has also been calculated. Of particular importance is that the crystalline phase concentration as a function of temperature has been calculated using free energy minimization methods instead of assuming it to be pure. In the limit of complete immiscibility of the solvent in the crystalline phase, the Flory diluent theory is recovered. The model is extended to binary crystalline blends and the formation of eutectric, peritectic and azeotrope phase diagrams has been explained on the basis of departure from ideal solid solution behavior. Experimental eutectic phase diagram from literature of a binary blend of crystalline polymer poly(caprolactone) and trioxane were recalculated using the aforementioned approach. Furthermore, simulations on the spatio temporal dynamics of crystallization in blends of crystalline and amorphous polymers were carried out using the Ginzburg-Landau approach. These simulations have provided insight into the distribution of the amorphous polymer in the blends during the crystallization process. The simulated results are in close accordance with the experimentally observed concentration profiles of atactic polypropyline during the crystallization of isotactic polypropylene in a blend of these polymers. Finally described are the unique thermodynamics and kinetics that occur in thermoplastic elastomer blends of polypropylene and synthetic rubber, leading to the unique biphasic crystalline morphology imparting these blends with their characteristic high toughness and high impact strength. Phase diagrams in such blends exhibit a combined upper and lower critical solution temperature. These phase diagrams have been calculated based on the present model developed, and simulated results explain the structural development in these blends."--Abstract.




Phase Transitions in Polymers: The Role of Metastable States


Book Description

A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics. * Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume




Phase Transitions and Structure of Polymer Systems in External Fields


Book Description

Generalized extensive experimental and theoretical data regarding the phase transitions of polymer systems in mechanical and magnetic fields provide the possibility to predict the results of external field effects on the structure and mutual solubility of components. The data on dynamic structuring in deformed polymer blends and solutions allow for the use of found regularities by the processing of polymer systems. The methods offered in this book allow for the connection of shift of phase diagrams in the mechanical field with changes in macromolecule sizes. The tutorials described here will help the reader to correctly build the phase diagrams of polymer systems using a variety of methods.




Kinetics of Phase Transitions


Book Description

Providing a comprehensive introduction with the necessary background material to make it accessible for a wide scientific audience, Kinetics of Phase Transitions discusses developments in domain-growth kinetics. This book combines pedagogical chapters from leading experts in this area and focuses on incorporating various experimentally releva




Kinetic Phase Diagrams


Book Description

The present theoretical and experimental knowledge of the time evolution of a system during solidification, not only in equilibrium, but also in nonequilibrium conditions, is summarized in this book. Such knowledge is of fundamental importance for the determination of the constitution of materials or of the technological conditions necessary to prepare materials with a desired structure. Emphasizing the importance of kinetic phase diagrams, the authors focus the attention of the reader on the problems connected with nonequilibrium conditions, that are encountered during real phase transformations. A critical review of phenomenological and statistical theories of phase transformations and of mass and heat transport enables the reader to determine the range of applicability of concrete models for the description of the evolution of a given system. The book is supplemented with several less-known methods and results of phase characterization, including a detailed account of the Soviet school of T.A. Cherepanova which is not well known in the West. The text also covers the modern research area of glasses and their preparation.




Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity


Book Description

Professor Skripov obtained worldwide recognition with his monograph "Metastable liquids", published in English by Wiley & Sons. Based upon this work and another monograph published only in Russia, this book investigates the behavior of melting line and the properties of the coexisting crystal and liquid phase of simple substances across a wide range of pressures, including metastable states of the coexisting phases. The authors derive new relations for the thermodynamic similarity for liquid-vapour phase transition, as well as describing solid-liquid, liquid-vapor and liquid-liquid phase transitions for binary systems employing the novel methodology of thermodynamic similarity.




The Physics of Phase Transitions


Book Description

The Physics of Phase Transitions occupies an important place at the crossroads of several fields central to materials sciences. This second edition incorporates new developments in the states of matter physics, in particular in the domain of nanomaterials and atomic Bose-Einstein condensates where progress is accelerating. New information and application examples are included. This work deals with all classes of phase transitions in fluids and solids, containing chapters on evaporation, melting, solidification, magnetic transitions, critical phenomena, superconductivity, and more. End-of-chapter problems and complete answers are included.







Phase Transitions and Crystal Symmetry


Book Description

About half a century ago Landau formulated the central principles of the phe nomenological second-order phase transition theory which is based on the idea of spontaneous symmetry breaking at phase transition. By means of this ap proach it has been possible to treat phase transitions of different nature in altogether distinct systems from a unified viewpoint, to embrace the aforemen tioned transitions by a unified body of mathematics and to show that, in a certain sense, physical systems in the vicinity of second-order phase transitions exhibit universal behavior. For several decades the Landau method has been extensively used to an alyze specific phase transitions in systems and has been providing a basis for interpreting experimental data on the behavior of physical characteristics near the phase transition, including the behavior of these characteristics in systems subject to various external effects such as pressure, electric and magnetic fields, deformation, etc. The symmetry aspects of Landau's theory are perhaps most effective in analyzing phase transitions in crystals because the relevant body of mathemat ics for this symmetry, namely, the crystal space group representation, has been worked out in great detail. Since particular phase transitions in crystals often call for a subtle symmetry analysis, the Landau method has been continually refined and developed over the past ten or fifteen years.




Phase Transformation and Properties


Book Description

This textbook illustrates one-component phase diagrams, binary equilibrium phase diagrams and ternary phase diagrams for ceramics, polymers and alloys by presenting case studies on preparation processes, and provides up-to-date information on nano-crystal materials, non-crystal materials and functional materials. As second volume in the set, it is an extension of the first volume on physical aspect of materials.