Photoactive Semiconductor Nanocrystal Quantum Dots


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Advances in Condensed-Matter and Materials Physics


Book Description

This book, Condensed Matter and Material Physics, incorporates the work of multiple authors to enhance the theoretical as well as experimental knowledge of materials. The investigation of crystalline solids is a growing need in the electronics industry. Micro and nano transistors require an in-depth understanding of semiconductors of different groups. Amorphous materials, on the other hand, as non-equilibrium materials are widely applied in sensors and other medical and industrial applications. Superconducting magnets, composite materials, lasers, and many more applications are integral parts of our daily lives. Superfluids, liquid crystals, and polymers are undergoing active research throughout the world. Hence profound information on the nature and application of various materials is in demand. This book bestows on the reader a deep knowledge of physics behind the concepts, perspectives, characteristic properties, and prospects. The book was constructed using 10 contributions from experts in diversified fields of condensed matter and material physics and its technology from over 15 research institutes across the globe.




Introduction to Fluorescence Sensing


Book Description

This book provides systematic knowledge of basic principles in the design of fluorescence sensing and imaging techniques together with critical analysis of recent developments. Fluorescence is the most popular technique in chemical and biological sensing because of its ultimate sensitivity, high temporal and spatial resolution and versatility that enables imaging within the living cells. It develops rapidly in the directions of constructing new molecular recognition units, new fluorescence reporters and in improving sensitivity of response up to detection of single molecules. Its application areas range from control of industrial processes to environment monitoring and clinical diagnostics. Being a guide for students and young researchers, it also addresses professionals involved in active basic and applied research. Making a strong link between education, research and product development, this book discusses prospects for future progress.




Solar Cells


Book Description

This book addresses the rapidly developing class of solar cell materials and designed to provide much needed information on the fundamental principles of these materials, together with how these are employed in photovoltaic applications. A special emphasize have been given for the space applications through study of radiation tolerant solar cells. This book present a comprehensive research outlining progress on the synthesis, fabrication and application of solar cells from fundamental to device technology and is helpful for graduate students, researchers, and technologists engaged in research and development of materials.




Nanostructured Ceramics


Book Description

This book discusses fundamentals of nanostructured ceramics involving functional, structural and high temperature materials. It provides both solved numerical problems and unsolved problems to enable the reader to envisage the correlation between synthesis process and properties in the perspective of new material development. It serves as a concise text to answer the basics and achieve research goals for academia and industry. Key Features Deals with basic strategy on data interpretation for nanostructured ceramics Proposes to bridge the gap between the nano and bulk properties of nanostructured ceramics Discusses brief schematics and equations to understand the different properties of nano to bulk ceramics Presents mode of data acquisition and interpretation through statistical module and solved numerical Includes unsolved numericals based on properties, data acquisition and interpretation




Ambipolar Materials and Devices


Book Description

Ambipolar materials represent a class of materials where positive and negative charge carriers can both transport concurrently. In recent years, a diverse range of materials have been synthesized and utilized for implementing ambipolar charge transport, with applications in high‐density data storage, field effect transistors, nanotransitors, photonic memory, biomaterial-based memories and artificial synapses. This book highlights recent development of ambipolar materials involving materials design, fundamental principles, interface modifications, device structures, ambipolar characteristics and promising applications. Challenges and prospects for investigating ambipolar materials in electronics and optoelectronics are also discussed. With contributions from global leaders in the field, this title will appeal to graduate students and researchers who want to understand the design, materials characteristics, device operation principles, specialized device application and mechanisms of the latest ambipolar materials.




Semiconductor Nanocrystals


Book Description

A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.




Nanoscience: Volume 6


Book Description

The field of nanoscience continues to grow and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Topics covered in this volume include metal halide perovskite nanomaterials, properties and applications, nanoparticles and nanocomposites for new permanent magnets and graphene-based materials for energy conversion applications. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.




Nanoscience


Book Description

The field of nanoscience continues to grow and, with such a vast landscape of material, careful distillation of the most important discoveries will help researchers find the key information they require. Nanoscience provides a critical and comprehensive assessment of the most recent research and opinion from across the globe. Topics covered in this volume include metal halide perovskite nanomaterials, properties and applications, nanoparticles and nanocomposites for new permanent magnets and graphene-based materials for energy conversion applications. Anyone practising in any nano-allied field, or wishing to enter the nano-world will benefit from this resource, presenting the current thought and applications of nanoscience.




Surface Photovoltage Analysis Of Photoactive Materials


Book Description

Surface photovoltage (SPV) techniques provide information about photoactive materials with respect to charge separation in space. This book aims to share experience in measuring and analyzing SPV signals and addresses researchers and developers interested in learning more about and in applying SPV methods. For this purpose, basics about processes in photoactive materials and principles of SPV measurements are combined with examples from research and development over the last two decades.SPV measurements with Kelvin probes, fixed capacitors, electron beams and photoelectrons are explained. Details are given for continuous, modulated and transient SPV spectroscopy. Simulation principles of SPV signals by random walks are introduced and applied for small systems. Application examples are selected for the characterization of silicon surfaces, gallium arsenide layers, electronic states in colloidal quantum dots, transport phenomena in metal oxides and local charge separation across photocatalytic active crystallites.