Photoelectron Statistics


Book Description

With the recent great expansion in optics and laser applications, several new areas of research have emerged, among which are: the theory of coherence, photon statistics, speckle phenomenon, statistical optics, atmospheric propa gation, optical communications, and light-beating and photon-correlation spectroscopy. A factor common to these overlapping subjects is their basic dependence on the treatment of light as a randomly fluctuating excitation. Moreover, they all necessitate a thorough understanding of the phenomenon of light detection and the additional randomness it introduces. My objective in writing this book is to provide a unified and general presentation of a basic theoretical background central to these areas. This book has a threefold purpose: to present a systematic treatment of the statistical properties of optical fields, to develop methods for deter mining the statistics of the photoelectron events that are generated when such fields are intercepted by photodetectors, and to examine methods of estimating unknown field parameters from measurements of the photoelectron events. Emphasis is placed on the photoelectron measurements that yield in formation pertinent to spectroscopy and optical communication. Although some books that treat the theory of coherence and the statisti cal properties of light are available, the vast body of information central to problems of photoelectron statistics and its applications is scattered in various professional journals and conference proceedings.




Photoelectron Statistics


Book Description




Stochastic Processes and their Applications


Book Description

A volume of this nature containing a collection of papers has been brought out to honour a gentleman - a friend and a colleague - whose work has, to a large extent, advanced and popularized the use of stochastic point processes. Professor Srinivasan celebrated his sixt~ first 1:!irth d~ on December 16,1990 and will be retiring as Professor of Applied Mathematics from the Indian Institute of Technolo~, Madras on June 30,1991. In view of his outstanding contributions to the theor~ and applications of stochastic processes over a time span of thirt~ ~ears, it seemed appropriate not to let his birth d~ and retirement pass unnoticed. A s~posium in his honour and the publication of the proceedings appeared to us to be the most natural and sui table ~ to mark the occasion. The Indian Societ~ for ProbabU it~ and Statistics volunteered to organize the S~posium as part of their XII Annual conference in Bomba~. We requested a number of long-time friends, colleagues and former students of Professor Srinivasan to contribute a paper preferabl~ in the area of stochastic processes and their applications. The positive response and the enthusiastic cooperation of these distinguished scientists have resulted in the present collection. The contributions to this volume are divided into four parts: Stochastic Theor~ (2 articles), P~sics (6 articles), Biolo~ (4 articles) and Operations Research (12 articles). In addition the ke~note address delivered b~ Professor Srinivasan in the S~posium is also included.




Inverse Scattering Problems in Optics


Book Description

When, in the spring of 1979, H.P. Baltes presented me with the precursor of this vo 1 ume, the book on "Inverse Source Problems in Opti cs", I expressed my gratitude in a short note, 11hich in translation, reads: "Dear Dr. Ba ltes, the mere titl e of your unexpected gift evokes memori es of a period, which, in the terminology of your own contribution, would be described as the Stone Age of the Inverse Problem. Those were pleasant times. Walter Kohn and I lived in a cave by ourselves, drew pictures on the walls, and nobody seemed to care. Now, however, Inversion has become an Industry, which I contemplate with as much bewilderment as a surviving Tasmanian aborigine gazing at a modern oil refinery with its towers, its fl ares, and the confus i ng maze of its tubes." The present volume makes me feel even more aboriginal - impossible for me to fathom its content. What I can point out, however, is one of the forgotten origins of the Inverse Scattering Problem of Quantum Mechanics: Werner Heisenberg's "S-Matrix Theory" of 1943. This grandiose scheme had the purpose of eliminating the notion of the Hamiltonian in favour of the scattering operator. If Successful, it would have done away once and for all with any kind of inverse problem.




Statistical Optics


Book Description

This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced in the second edition, including: Analysis of the Vander Pol oscillator model of laser light Coverage on coherence tomography and coherence multiplexing of fiber sensors An expansion of the chapter on imaging with partially coherent light, including several new examples An expanded section on speckle and its properties New sections on the cross-spectrum and bispectrum techniques for obtaining images free from atmospheric distortions A new section on imaging through atmospheric turbulence using coherent light The addition of the effects of “read noise” to the discussions of limitations encountered in detecting very weak optical signals A number of new problems and many new references have been added Statistical Optics, Second Edition is written for researchers and engineering students interested in optics, physicists and chemists, as well as graduate level courses in a University Engineering or Physics Department.




Probability, Statistical Optics, and Data Testing


Book Description

A basic skill in probability is practically demanded nowadays in many bran ches of optics, especially in image science. On the other hand, there is no text presently available that develops probability, and its companion fields stochastic processes and statistics, from the optical perspective. [Short of a book, a chapter was recently written for this purpose; see B. R. Frieden (ed. ): The Computer in Optical Research, Topics in Applied Physics, Vol. 41 (Springer, Berlin, Heidelberg, New York 1980) Chap. 3] Most standard texts either use illustrative examples and problems from electrical engineering or from the life sciences. The present book is meant to remedy this situation, by teaching probability with the specific needs of the optical researcher in mind. Virtually all the illustrative examples and applications of the theory are from image science and other fields of optics. One might say that photons have replaced electrons in nearly all considera tions here. We hope, in this manner, to make the learning of probability a pleasant and absorbing experience for optical workers. Some of the remaining applications are from information theory, a con cept which complements image science in particular. As will be seen, there are numerous tie-ins between the two concepts. Students will be adequately prepared for the material in this book if they have had a course in calculus, and know the basics of matrix manipulation.




Differential Optical Absorption Spectroscopy


Book Description

The first part of this book reviews the basics of atmospheric chemistry, radiation transport, and optical spectroscopy before detailing the principles underlying DOAS. The second part describes the design and application of DOAS instruments as well as the evaluation and interpretation of spectra. The recent expansion of DOAS application to the imaging of trace gas distributions by ground, aircraft, and satellite-based instruments is also covered.




Modular Optical Design


Book Description

Images are ubiquitous. Their formation is one of natures universalities. Water droplets in suspension act in concert to produce rainbows. A partially filled wine glass can be made to form the image of a chandelier at aboring dinner party. The bottom of a water glass, too, can be made to produce an optical image, wildly distorted perhaps, but nevertheless recognizable as an optical image. Primitive folklore abounds with images. Perseus used his highly polished shield as a rear view mirror to lop off Medusa's head without turning hirnself into stone. Narcissus, displaying incrediblY poor taste, fell in love with his own reflection in a pool of water, causing poor Echo to pine away to a me re echo and providing yet another term for the psychoanalytic lexicon. Strepsiades, according to Aristophanes, proposed using a "burning stone" to melt a summons off the bailiff's wax tablet. And the castaways in Jules Vernes' MYsterious Is~nd made a burning glass by freezing water in a watch crystal. Everyone from the Baron Münchhausen to Tom Swift has gotten into the optics act with incredible but eminently useful optical devices. Indeed, Mother Nature herself has had a hand in evolving image-making de vices. Any reasonably symmetrie glob of transparent material, such as an ag gregate of cells, is capable of forming an image. It is not difficult to imag ine the specialization of such an aggregate into a blastula-like structure with an anterior window and light sensitive neurons at its posterior region.




Probability, Statistical Optics, and Data Testing


Book Description

This new edition incorporates corrections of all known typographical errors in the first edition, as well as some more substantive changes. Chief among the latter is the addition of Chap. 17, on methods of estimation. As with the rest of the text, most applications and examples cited in the new chapter are from the optical perspective. The intention behind this new chapter is to empower the optical researcher with a yet broader range of research tools. Certainly a basic knowledge of estimation methods should be among these. In particular, the sections on likelihood theory and Fisher information prepare readers for the problems of optical parameter estimation and probability law estimation. Physicists and optical scientists might find this material particularly useful, since the subject of Fisher information is generally not covered in standard physical science curricula. Since the words "statistical optics" are prominent in the title of this book, their meaning needs to be clarified. There is a general tendency to overly emphasize the statistics of photons as the sine qua non of statistical optics. In view is taken, which equally emphasizes the random medium this text a wider that surrounds the photon, be it a photographic emulsion, the turbulent atmo sphere, a vibrating lens holder, etc. Also included are random interpretations of ostensibly deterministic phenomena, such as the Hurter-Driffield (H and D) curve of photography. Such a "random interpretation" sometimes breaks new ground, as in Chap.