Photon upconversion heterostructures made from surface-anchored metal-organic frameworks


Book Description

This work deals with the process of photon upconversion in surface-anchored metal-organic frameworks. During the upconversion, two low-energy photons are absorbed and fused into a higher-energy photon, which is emitted. In this work, this process is analyzed in surface-bound metal-organic frameworks by spectroscopic methods. Furthermore, the application for increasing the efficiency of solar cells is discussed.




Photon Upconversion Heterostructures Made From Surface-anchored Metal-organic Frameworks


Book Description

This work deals with the process of photon upconversion in surface-anchored metal-organic frameworks. During the upconversion, two low-energy photons are absorbed and fused into a higher-energy photon, which is emitted. In this work, this process is analyzed in surface-bound metal-organic frameworks by spectroscopic methods. Furthermore, the application for increasing the efficiency of solar cells is discussed. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




Advanced Elastocaloric Cooling Devices Based on Shape Memory Alloy Films


Book Description

Elastocaloric cooling is an emerging solid-state cooling technology with the potential to provide environmentally friendly, efficient cooling. The elastocaloric effect in superelastic shape memory alloy films is used to develop advanced cooling devices for small-scale applications. Cascaded and parallelized devices are developed to increase device temperature span and cooling capacity. The concepts are proven experimentally, a maximum temperature span of 27° C is achieved in a cascaded device.




In Situ Characterization and Modelling of Drying Dynamics for Scalable Printing of Hybrid Perovskite Photovoltaics


Book Description

Hybrid perovskite photovoltaics could play a vital role in future’s renewable energy production. However, there are still severe challenges when scaling the technology. In this work, perovskite solution films drying in laminar and slot-jet air flows are investigated extensively by optical in situ characterization. The main results are a quantitative model of perovskite drying dynamics and a novel in situ imaging technique – yielding valuable predictions for large-scale perovskite fabrication.




Innovative micro-NMR/MRI functionality utilizing flexible electronics and control systems


Book Description

The advantages offered by the flexible electronics and control systems technologies were utilized for tackling the challenges facing two crucial Magnetic Resonance (MR) applications. The first application is in the field of interventional Magnetic Resonance Imaging (MRI), and the other application is in the field of Nuclear Magnetic Resonance spectroscopy (NMR).




Power Generation by Resonant Self-Actuation


Book Description

Die Forschung im Bereich der Mikro-Energiegewinnungssysteme wurde durch den Bedarf an autarken, stabilen Energiequellen für vernetzte drahtlose Sensoren vorangetrieben. Abwärme, insbesondere bei Temperaturen unter 200 °C, stellt eine vielversprechende, aber mit den derzeitigen Umwandlungstechnologien schwer zu gewinnende Energiequelle dar. - Research into micro energy harvesting systems has been driven by the need for self-sustaining, stable power sources for interconnected wireless sensors. Waste heat, particularly at temperatures below 200 °C, presents a promising but challenging energy source to recover using current conversion technology.




NMR micro-detectors tailored for multinuclear and electrochemistry lab-on-a-chip applications


Book Description

This work offers three solutions tailored to specific applications to overcome NMR challenges in the micro-domain. As the first sub-topic of this work, different potential electrode designs, compatible with NMR technique, are suggested and experimentally evaluated. As the second focus point, this work tackles multinuclear detection challenges. In parallel, a low-cost, broadband insert is discussed to enhance the sensitivity of standard NMR coils when a small sample volume is available.










Metal-Organic Framework Materials


Book Description

Metal-Organic Frameworks (MOFs) are crystalline compounds consisting of rigid organic molecules held together and organized by metal ions or clusters. Special interests in these materials arise from the fact that many are highly porous and can be used for storage of small molecules, for example H2 or CO2. Consequently, the materials are ideal candidates for a wide range of applications including gas storage, separation technologies and catalysis. Potential applications include the storage of hydrogen for fuel-cell cars, and the removal and storage of carbon dioxide in sustainable technical processes. MOFs offer the inorganic chemist and materials scientist a wide range of new synthetic possibilities and open the doors to new and exciting basic research. Metal-Organic Frameworks Materials provides a solid basis for the understanding of MOFs and insights into new inorganic materials structures and properties. The volume also reflects progress that has been made in recent years, presenting a wide range of new applications including state-of-the art developments in the promising technology for alternative fuels. The comprehensive volume investigates structures, symmetry, supramolecular chemistry, surface engineering, recognition, properties, and reactions. The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc