Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates


Book Description

A thorough analysis of catecholamine systems in a wide range of vertebrates by experts. The book will be of interest to researchers and postgraduates of neuroscience, neurobiology, zoology, medicine and physiology.




The Central Nervous System of Vertebrates


Book Description

This comprehensive reference is clearly destined to become the definitive anatomical basis for all molecular neuroscience research. The three volumes provide a complete overview and comparison of the structural organisation of all vertebrate groups, ranging from amphioxus and lamprey through fishes, amphibians and birds to mammals. This thus allows a systematic treatment of the concepts and methodology found in modern comparative neuroscience. Neuroscientists, comparative morphologists and anatomists will all benefit from: * 1,200 detailed and standardised neuroanatomical drawings * the illustrations were painstakingly hand-drawn by a team of graphic designers, specially commissioned by the authors, over a period of 25 years * functional correlations of vertebrate brains * concepts and methodology of modern comparative neuroscience * five full-colour posters giving an overview of the central nervous system of the vertebrates, ideal for mounting and display This monumental work is, and will remain, unique; the only source of such brilliant illustrations at both the macroscopic and microscopic levels.




Adaptive Function and Brain Evolution


Book Description

The brain of each animal shows specific traits that reflect its phylogenetic history and its particular lifestyle. Therefore, comparing brains is not just a mere intellectual exercise, but it helps understanding how the brain allows adaptive behavioural strategies to face an ever-changing world and how this complex organ has evolved during phylogeny, giving rise to complex mental processes in humans and other animals. These questions attracted scientists since the times of Santiago Ramon y Cajal one of the founders of comparative neurobiology. In the last decade, this discipline has undergone a true revolution due to the analysis of expression patterns of morphogenetic genes in embryos of different animals. The papers of this e-book are good examples of modern comparative neurobiology, which mainly focuses on the following four Grand Questions: a) How are different brains built during ontogeny? b) What is the anatomical organization of mature brains and how can they be compared? c) How do brains work to accomplish their function of ensuring survival and, ultimately, reproductive success? d) How have brains evolved during phylogeny? The title of this e-book, Adaptive Function and Brain Evolution, stresses the importance of comparative studies to understand brain function and, the reverse, of considering brain function to properly understand brain evolution. These issues should be taken into account when using animals in the research of mental function and dysfunction, and are fundamental to understand the origins of the human mind.







Evolutionary Neuroscience


Book Description

Evolutionary Neuroscience is a collection of articles in brain evolution selected from the recent comprehensive reference, Evolution of Nervous Systems (Elsevier, Academic Press, 2007). The selected chapters cover a broad range of topics from historical theory to the most recent deductions from comparative studies of brains. The articles are organized in sections focused on theories and brain scaling, the evolution of brains from early vertebrates to present-day fishes, amphibians, reptiles and birds, the evolution of mammalian brains, and the evolution of primate brains, including human brains. Each chapter is written by a leader or leaders in the field, and has been reviewed by other experts. Specific topics include brain character reconstruction, principles of brain scaling, basic features of vertebrate brains, the evolution of the major sensory systems, and other parts of brains, what we can learn from fossils, the origin of neocortex, and the evolution of specializations of human brains. The collection of articles will be interesting to anyone who is curious about how brains evolved from the simpler nervous systems of the first vertebrates into the many different complex forms now found in present-day vertebrates. This book would be of use to students at the graduate or undergraduate levels, as well as professional neuroscientists, cognitive scientists, and psychologists. Together, the chapters provide a comprehensive list of further reading and references for those who want to inquire further. - The most comprehensive, authoritative and up-to-date single volume collection on brain evolution - Full color throughout, with many illustrations - Written by leading scholars and experts




Evolution of the Brain, Cognition, and Emotion in Vertebrates


Book Description

This book presents a new view on the evolution of the brain, cognition, and emotion. Around a half-century ago, Professor Harry Jerison published a seminal book entitled Evolution of the Brain and Intelligence. Since then, there has been a series of dramatic methodological and conceptual changes which have led to many new insights into the understanding of brain evolution and cognition. This book is particularly focused on three significant aspects of such changes. First, taking advantage of a new integrated approach called evolutionary developmental biology or Evo/Devo, researchers have started to look into vertebrate brain evolution from the developmental perspective. Second, comparative neuroanatomists have accumulated a large amount of information about the brains of diverse animal groups to refute the old-fashioned idea that vertebrate brains evolved linearly from non-mammals to mammals. Third, comparative behavioral studies have demonstrated that sophisticated cognition and emotion are not unique to some primates but are also found in many non-primate and even non-mammalian species. This work will appeal to a wide readership in such fields as neuroscience, cognitive science, and behavioral science.




Coulometric Electrode Array Detectors for HPLC


Book Description

This sixth volume in the book series Progress in HPLC-HPCE examines the enhancement of high- performance liquid chromatography through the development of an advanced mode of electrochemical detection (ECD) --- the coulometric array detection --- from its initial, yet problematic, amperometric (thin-layer) design to the highly sensitive, selective and stable coulometric (flow-through) design. Unlike amperometric electrodes, the coulometric electrode is 100% efficient and measures signals from all of the analyte passing through it, which leads to improved sensitivity as well as unique selectivity. The coulometric electrode array offers the resolution of the photodiode array with the extreme sensitivity of an electrochemical detector.




Development and Regenerative Capacity of Descending Supraspinal Pathways in Tetrapods


Book Description

In this treatise, current knowledge on the neurogenesis, axonal outgrowth, synaptogenesis, and regenerative capacity of descending supraspinal pathways in tetrapods is discussed. Although emphasis is on the clawed toad, Xenopus laevis, chicken embryos, opossums and rodent data, also the data available for primates including man are presented. It will be shown that 1) the outgrowth of descending supraspinal pathways is the result of a coordinated program; 2) the pattern of early descending axonal tracts is similar in all vertebrate groups; 3) the formation of descending supraspinal pathways occurs according to a developmental sequence; 4) the earliest descending supraspinal fibers arrive in a rather immature spinal cord, and 5) the regenerative capacity of descending supraspinal pathways depends on the developmental stage the particular pathways arise.







Comparative Vertebrate Neuroanatomy


Book Description

Comparative Vertebrate Neuroanatomy Evolution and Adaptation Second Edition Ann B. Butler and William Hodos The Second Edition of this landmark text presents a broad survey of comparative vertebrate neuroanatomy at the introductory level, representing a unique contribution to the field of evolutionary neurobiology. It has been extensively revised and updated, with substantially improved figures and diagrams that are used generously throughout the text. Through analysis of the variation in brain structure and function between major groups of vertebrates, readers can gain insight into the evolutionary history of the nervous system. The text is divided into three sections: * Introduction to evolution and variation, including a survey of cell structure, embryological development, and anatomical organization of the central nervous system; phylogeny and diversity of brain structures; and an overview of various theories of brain evolution * Systematic, comprehensive survey of comparative neuroanatomy across all major groups of vertebrates * Overview of vertebrate brain evolution, which integrates the complete text, highlights diversity and common themes, broadens perspective by a comparison with brain structure and evolution of invertebrate brains, and considers recent data and theories of the evolutionary origin of the brain in the earliest vertebrates, including a recently proposed model of the origin of the brain in the earliest vertebrates that has received strong support from newly discovered fossil evidence Ample material drawn from the latest research has been integrated into the text and highlighted in special feature boxes, including recent views on homology, cranial nerve organization and evolution, the relatively large and elaborate brains of birds in correlation with their complex cognitive abilities, and the current debate on forebrain evolution across reptiles, birds, and mammals. Comparative Vertebrate Neuroanatomy is geared to upper-level undergraduate and graduate students in neuroanatomy, but anyone interested in the anatomy of the nervous system and how it corresponds to the way that animals function in the world will find this text fascinating.