Physical and Physiological Forest Ecology


Book Description

This book introduces a holistic synthesis of carbon and nitrogen fluxes in forest ecosystems from cell to stand level during the lifetime of trees. Establishing that metabolism and physical phenomena give rise to concentration, pressure and temperature differences that generate the material and energy fluxes between living organisms and their environment. The editors and authors utilize physiological, physical and anatomical background information to formulate theoretical ideas dealing with the effects of the environment and the state of enzymes, membrane pumps and pigments on metabolism. The emergent properties play an important role in the transitions from detailed to more aggregate levels in the ecosystem. Conservation of mass and energy allow the construction of dynamic models of carbon and nitrogen fluxes and pools at various levels in the hierarchy of forest ecosystems.




Physiological Ecology of Forest Production


Book Description

Process-based models open the way to useful predictions of the future growth rate of forests and provide a means of assessing the probable effects of variations in climate and management on forest productivity. As such they have the potential to overcome the limitations of conventional forest growth and yield models, which are based on mensuration data and assume that climate and atmospheric CO2 concentrations will be the same in the future as they are now. This book discusses the basic physiological processes that determine the growth of plants, the way they are affected by environmental factors and how we can improve processes that are well-understood such as growth from leaf to stand level and productivity. A theme that runs through the book is integration to show a clear relationship between photosynthesis, respiration, plant nutrient requirements, transpiration, water relations and other factors affecting plant growth that are often looked at separately. This integrated approach will provide the most comprehensive source for process-based modelling, which is valuable to ecologists, plant physiologists, forest planners and environmental scientists. - Includes explanations of inherently mathematical models, aided by the use of graphs and diagrams illustrating causal interactions and by examples implemented as Excel spreadsheets - Uses a process-based model as a framework for explaining the mechanisms underlying plant growth - Integrated approach provides a clear and relatively simple treatment




Plant Physiological Ecology


Book Description

This textbook is remarkable for emphasising that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. The authors begin with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes.




Forest Ecosystems


Book Description

Situating forests in the context of larger landscapes, they reveal the complex patterns and processes observed in tree-dominated habitats. The updated and expanded second edition covers; Conservation; Ecosystem services; Climate change; Vegetation classification; Disturbance; Species interactions; Self-thinning; Genetics; Soil influences; Productivity; Biogeochemical cycling; Mineralization; Effects of herbivory; Ecosystem stability




Physiological Ecology of the Alpine Timberline


Book Description

In the European Alps the importance of forests as protection against ava lanches and soil erosion is becoming ever clearer with the continuing increase in population and development of tourism. The protective potential of the moun tain forests can currently only be partially realised because a considerable propor tion of high-altitude stands has been destroyed in historical times by man's extensive clearing ofthe forests. The forests still remaining are of limited effec tiveness, due to inadequate density of trees and over-maturity. Considerable efforts, however, are now being made in the Alps and other mountains of the globe to increase the high-altitude forested area through reforestation, to raise depressed timberlines, and to restore remaining protection forests using suit able silvicultural methods to their full protective value. This momentous task, if it is to be successful, must be planned on a sound foundation. An important prerequisite is the assembly of scientific facts con cerning the physical environment in the protection forest zone of mountains, and the course of various life processes of tree species occurring there. Since the introduction of practical field techniques it has been possible to investigate successfully the reaction of trees at various altitudes to recorded factors, and the extent to which they are adapted to the measured situations. Such ecophysio logical studies enable us to recognize the site requirements for individual tree species, and the reasons for the limits of their natural distribution.




Plant Physiological Ecology


Book Description

Physiological plant ecology is primarily concerned with the function and performance of plants in their environment. Within this broad focus, attempts are made on one hand to understand the underlying physiological, biochemical and molecular attributes of plants with respect to performance under the constraints imposed by the environment. On the other hand physiological ecology is also concerned with a more synthetic view which attempts to under stand the distribution and success of plants measured in terms of the factors that promote long-term survival and reproduction in the environment. These concerns are not mutually exclusive but rather represent a continuum of research approaches. Osmond et al. (1980) have elegantly pointed this out in a space-time scale showing that the concerns of physiological ecology range from biochemical and organelle-scale events with time constants of a second or minutes to succession and evolutionary-scale events involving communities and ecosystems and thousands, if not millions, of years. The focus of physiological ecology is typically at the single leaf or root system level extending up to the whole plant. The time scale is on the order of minutes to a year. The activities of individual physiological ecologists extend in one direction or the other, but few if any are directly concerned with the whole space-time scale. In their work, however, they must be cognizant both of the underlying mechanisms as well as the consequences to ecological and evolutionary processes.




Analysis of Temperate Forest Ecosystems


Book Description

A series of concise books, each by one or several authors, will provide prompt, world-wide information on approaches to analyzing ecological systems and their interacting parts. Syntheses of results in turn will illustrate the effectiveness, and the limitations, of current knowledge. This series aims to help overcome the fragmen tation of our understanding about natural and managed landscapes and water- about man and the many other organisms which depend on these environments. We may sometimes seem complacent that our environment has supported many civilizations fairly well - better in some parts of the Earth than in others. Modern technology has mastered some difficulties but creates new ones faster than we anticipate. Pressures of human and other animal populations now highlight complex ecological problems of practical importance and theoretical scientific interest. In every climatic-biotic zone, changes in plants, soils, waters, air and other resources which support life are accelerating. Such changes engulf not only regions already crowded or exploited. They spill over into more natural areas where contrasting choices for future use should remain open to our descendents-where Nature's own balances and imbalances can be interpreted by imaginative research, and need to be.




Forests: Elements of Silvology


Book Description

Silvology is the general science of forest ecosystems, without the usual division between Man and Nature. This systematic treatment of forests intends to integrate and harmonize existing approaches with the help of systems modeling in a hierarchy of close system levels, according to criteria of biological architecture, biomass production and species composition. Scientists and practitioners will appreciate this synoptic treatment of forests and their ecology, allowing the balance of holistic and reductionist viewpoints, and the placement of phenomena and techniques. Topics covered include: - introduction of the methods, - sections on forest organisms, - a special chapter on trees, - eco-units, i.e. forest ecosystems developing after some zero-event like fire, storm or waterlogging, - silvatic mosaics built by the eco-units of different size, architecture and species composition, - a summary of silvological rules determining system's behaviour at every level, e.g. fragmentation and fusion, transfer of functions, irreversibility and process oscillation.




Plant Physiological Ecology


Book Description

Box 9E. 1 Continued FIGURE 2. The C–S–R triangle model (Grime 1979). The strategies at the three corners are C, competiti- winning species; S, stress-tolerating s- cies; R,ruderalspecies. Particular species can engage in any mixture of these three primary strategies, and the m- ture is described by their position within the triangle. comment briefly on some other dimensions that Grime’s (1977) triangle (Fig. 2) (see also Sects. 6. 1 are not yet so well understood. and 6. 3 of Chapter 7 on growth and allocation) is a two-dimensional scheme. A C—S axis (Com- tition-winning species to Stress-tolerating spe- Leaf Economics Spectrum cies) reflects adaptation to favorable vs. unfavorable sites for plant growth, and an R- Five traits that are coordinated across species are axis (Ruderal species) reflects adaptation to leaf mass per area (LMA), leaf life-span, leaf N disturbance. concentration, and potential photosynthesis and dark respiration on a mass basis. In the five-trait Trait-Dimensions space,79%ofallvariation worldwideliesalonga single main axis (Fig. 33 of Chapter 2A on photo- A recent trend in plant strategy thinking has synthesis; Wright et al. 2004). Species with low been trait-dimensions, that is, spectra of varia- LMA tend to have short leaf life-spans, high leaf tion with respect to measurable traits. Compared nutrient concentrations, and high potential rates of mass-based photosynthesis. These species with category schemes, such as Raunkiaer’s, trait occur at the ‘‘quick-return’’ end of the leaf e- dimensions have the merit of capturing cont- nomics spectrum.




Ecophysiology of Coniferous Forests


Book Description

Conifers--pine, fir, and spruce trees--are dominant species in forests around the world. This book focuses on the physiology of conifers and how these physiological systems operate. Special consideration is devoted to the means by which ecophysiological processes influence organismal function and distribution. Chapters focus on the genetics of conifers, their geographic distribution and the factors that influence this distribution, the impact of insect herbivory on ecophysiological parameters, the effects of air pollution, and the potential impact that global climatic changes will have upon conifers. Because of the growing realization that forests have a crucial role to play in global environmental health, this book will appeal to a developing union of ecologists, physiologists and more theoretically minded foresters.