Calculations in Chemistry


Book Description

Calculations in Chemistry is intended to help students overcome the challenges associated with solving the numerical problems in chemistry. Chemistry is a numerical science which cannot be fully appreciated without adequate numerical skills. In fact, the lack of problem-solving skills has been recognised as one of the major reasons for the poor performance recorded in the subject over the years. Budgetary and size constraints often translate to lack of space for solving enough sample problems in core textbooks and most problems are presented in a difficult manner that douses enthusiasm for learning. Thus, a book of this nature, containing numerous solved problems drawn from all aspects of chemistry, is necessary to complement the core texts if students are to attain the required level of mastery in the subject. Meant specifically for students studying chemistry at undergraduate and postgraduate levels, this book presents the calculations in chemistry in a simple, logical and down-to-earth manner that will impart students with the required numerical skills for excelling in chemistry. wide topical coverage clear, concise introductions that explain basic principles and theoretical basis for each type of calculation numerous representative examples practice problems and answers to test what has been explained end-of-chapter summary that gives a checklist of key terms and concepts numerous exercises, including objective questions, with answers exhaustive coverage of the mole concept use of SI units and IUPAC conventions it assumes little or no prior knowledge of chemistry and mathematics comprehensive treatment of quantitative analysis appendices that supply useful information




A Working Method Approach for Introductory Physical Chemistry Calculations


Book Description

A Working Method Approach for Introductory Physical Chemistry Calculations is a concise inexpensive introduction to first year chemistry that is aimed at students who are weak in chemistry or have no chemistry on entry to university. Such students usually find physical chemistry the most difficult part of the chemistry course, and within this section numerical problem solving is an additional difficulty. The text should also be invaluable to first year intending chemists. This text provides an introduction to physical chemistry and the gas laws, followed by chapters on thermodynamics, chemical equilibrium, electrochemistry and chemical kinetics. Each section involves a brief introduction followed by a representative examination question, which is broken down into a proposed working method. Both short multiple-choice questions and related full examination-type questions are included. This book will prove invaluable to students who need encouragement in a logical approach to problem solving in physical chemistry, teaching them to think for themselves when faced with a problem.




Molecular Physical Chemistry


Book Description

This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica®), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica® codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica® or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.







Mathematics for Physical Chemistry


Book Description

Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. - Numerous examples and problems interspersed throughout the presentations - Each extensive chapter contains a preview, objectives, and summary - Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory - Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics




Quantities, Units and Symbols in Physical Chemistry


Book Description

Prepared by the IUPAC Physical Chemistry Division this definitive manual, now in its third edition, is designed to improve the exchange of scientific information among the readers in different disciplines and across different nations. This book has been systematically brought up to date and new sections added to reflect the increasing volume of scientific literature and terminology and expressions being used. The Third Edition reflects the experience of the contributors with the previous editions and the comments and feedback have been integrated into this essential resource. This edition has been compiled in machine-readable form and will be available online.




Ab Initio Calculations


Book Description

Until recently quantum chemical ab initio calculations were re stricted to atoms and very small molecules. As late as in 1960 Allen l and Karo stated : "Almost all of our ab initio experience derives from diatomic LCAO calculations ••• N and we have found in the litera ture "approximately eighty calculations, three-fourths of which are for diatomic molecules ••• There are approximately twenty ab initio calculations for molecules with more than two atoms, but there is a decided dividing line between the existing diatomic and polyatomic wave functions. Confidence in the satisfactory evaluation of the many -center two-electron integrals is very much less than for the diatom ic case". Among the noted twenty calculations, SiH was the largest 4 molecule treated. In most cases a minimal basis set was used and the many-center two-electron integrals were calculated in an approximate way. Under these circumstances the ab initio calculations could hard ly provide useful chemical information. It is therefore no wonder that the dominating role in the field of chemical applications was played by semiempirical and empirical methods. The situation changed essentially in the next decade. The problem of many-center integrals was solved, efficient and sophisticated computer programs were devel oped, basis sets suitable for a given type of problem were suggested, and, meanwhile, a considerable amount of results has been accumulated which serve as a valuable comparative material. The progress was of course inseparable from the development and availability of computers.




Calculations in Chemical Kinetics for Undergraduates


Book Description

Calculations in Chemical Kinetics for Undergraduates aims to restore passion for problem solving and applied quantitative skills in undergraduate chemistry students. Avoiding complicated chemistry jargon and providing hints and step wise explanations in every calculation problem, students are able to overcome their fear of handling mathematically applied problems in physical chemistry. This solid foundation in their early studies will enable them to connect fundamental theoretical chemistry to real experimental applications as graduates. Additional Features Include: Contains quantitative problems from popular physical chemistry references. Provides step by step explanations are given in every calculation problem. Offers hints to certain problems as "points to note" to enable student comprehension. Includes solutions for all questions and exercises. This book is a great resource for undergraduate chemistry students however, the contents are rich and useful to even the graduate chemist that has passion for applied problems in physical chemistry of reaction Kinetics.




Beginning Calculations in Physical Chemistry


Book Description

This workbook seeks to help undergraduates tackle physical chemistry calculations with confidence. Examples and exercises - with answers - are provided




Introduction to Computational Physical Chemistry


Book Description

This book will revolutionize the way physical chemistry is taught by bridging the gap between the traditional "solve a bunch of equations for a very simple model" approach and the computational methods that are used to solve research problems. While some recent textbooks include exercises using pre-packaged Hartree-Fock/DFT calculations, this is largely limited to giving students a proverbial black box. The DIY (do-it-yourself) approach taken in this book helps student gain understanding by building their own simulations from scratch. The reader of this book should come away with the ability to apply and adapt these techniques in computational chemistry to his or her own research problems, and have an enhanced ability to critically evaluate other computational results. This book is mainly intended to be used in conjunction with an existing physical chemistry text, but it is also well suited as a stand-alone text for upper level undergraduate or intro graduate computational chemistry courses.