Physical Nonequilibrium in Soils


Book Description

Physical Nonequilibrium in Soils provides cutting-edge knowledge on physical nonequilibrium phenomena in soils, offering unique insight into the complexity of our physical world. With 18 chapters comprising the book, topics cover soil properties fluid properties mechanistic models transfer function geostatistics fractal analysis cellular-automation fluids coupling of physical and chemical nonequilibrium models confirming and quantifying physical nonequilibrium in soils analytical solutions field-scale research environmental impacts.




Physical Nonequilibrium in Soils


Book Description

Physical Nonequilibrium in Soils provides cutting-edge knowledge on physical nonequilibrium phenomena in soils, offering unique insight into the complexity of our physical world. With 18 chapters comprising the book, topics cover soil properties fluid properties mechanistic models transfer function geostatistics fractal analysis cellular-automation fluids coupling of physical and chemical nonequilibrium models confirming and quantifying physical nonequilibrium in soils analytical solutions field-scale research environmental impacts.




Soil Physics with HYDRUS


Book Description

Numerical models have become much more efficient, making their application to problems increasingly widespread. User-friendly interfaces make the setup of a model much easier and more intuitive while increased computer speed can solve difficult problems in a matter of minutes. Co-authored by the software’s creator, Dr. Jirka Šimůnek, Soil Physics with HYDRUS: Modeling and Applications demonstrates one- and two-dimensional simulations and computer animations of numerical models using the HYDRUS software. Classroom-tested at the University of Georgia by Dr. David Radcliffe, this volume includes numerous examples and homework problems. It provides students with access to the HYDRUS-1D program as well as the Rosetta Module, which contains large volumes of information on the hydraulic properties of soils. The authors use HYDRUS-1D for problems that demonstrate infiltration, evaporation, and percolation of water through soils of different textures and layered soils. They also use it to show heat flow and solute transport in these systems, including the effect of physical and chemical nonequilibrium conditions. The book includes examples of two-dimensional flow in fields, hillslopes, boreholes, and capillary fringes using HYDRUS (2D/3D). It demonstrates the use of two other software packages, RETC and STANMOD, that complement the HYDRUS series. Hands-on use of the windows-based codes has proven extremely effective when learning the principles of water and solute movement, even for users with very little direct knowledge of soil physics and related disciplines and with limited mathematical expertise. Suitable for teaching an undergraduate or lower level graduate course in soil physics or vadose zone hydrology, the text can also be used for self-study on how to use the HYDRUS models. With the information in this book, you can run models for different scenarios and with different parameters, and thus gain a better understanding of the physics of water flow and contaminant transport.




Encyclopedia of Soil Science


Book Description

"Upholding the high standard of quality set by the previous edition, this two-volume second edition offers a vast array of recent peer-reviewed articles. It showcases research and practices with added sections on ISTIC-World Soil Information, root growth and agricultural management, nitrate leaching management, podzols, paramos soils, water repellant soils, rare earth elements, and more. With hundreds of entries covering tillage, irrigation, erosion control, ground water, and soil degradation, the book offers quick access to all branches of soil science, from mineralology and physics, to soil management, restoration, and global warming."--Publisher's website.




Principles of Soil Physics


Book Description

Principles of Soil Physics examines the impact of the physical, mechanical, and hydrological properties and processes of soil on agricultural production, the environment, and sustainable use of natural resources. The text incorporates valuable assessment methods, graphs, problem sets, and tables from recent studies performed around the globe and offers an abundance of tables, photographs, and easy-to-follow equations in every chapter. The book discusses the consequences of soil degradation, such as erosion, inhibited root development, and poor aeration. It begins by defining soil physics, soil mechanics, textural properties, and packing arrangements . The text continues to discuss the theoretical and practical aspects of soil structure and explain the significance and measurement of bulk density, porosity, and compaction. The authors proceed to clarify soil hydrology topics including hydrologic cycle, water movement, infiltration, modeling, soil evaporation, and solute transport processes. They address the impact of soil temperature on crop growth, soil aeration, and the processes that lead to the emission of greenhouse gases. The final chapters examine the physical properties of gravelly soils and water movement in frozen, saline, and water-repellant soils. Reader-friendly and up-to-date, Principles of Soil Physics provides unparalleled coverage of issues related to soil physics, structure, hydrology, aeration, temperature, and analysis and presents practical techniques for maintaining soil quality to ultimately preserve its sustainability.




Handbook of Soil Sciences (Two Volume Set)


Book Description

An evolving, living organic/inorganic covering, soil is in dynamic equilibrium with the atmosphere above, the biosphere within, and the geology below. It acts as an anchor for roots, a purveyor of water and nutrients, a residence for a vast community of microorganisms and animals, a sanitizer of the environment, and a source of raw materials for co




Transport & Fate of Chemicals in Soils


Book Description

During the last four decades, tremendous advances have been made towards the understanding of transport characteristics of contaminants in soils, solutes, and tracers in geological media. Transport & Fate of Chemicals in Soils: Principles & Applications offers a comprehensive treatment of the subject complete with supporting examples of mathematical models that describe contaminants reactivity and transport in soils and aquifers. This approach makes it a practical guide for designing experiments and collecting data that focus on characterizing retention as well as release kinetic reactions in soils and contaminant transport experiments in the laboratory, greenhouse), and in the field. The book provides the basic framework of the principals governing the sorption and transport of chemicalsin soils. It focuses on physical processes such as fractured media, multiregion, multiple porosities, and heterogeneity and effect of scale as well as chemical processes such as nonlinear kinetics, release and desorption hysteresis, multisite and multireaction reactions, and competitive-type reactions. The coverage also includes details of sorption behavior of chemicals with soil matrix surfaces as well the integration of sorption characteristics with mechanisms that govern solute transport in soils. The discussions of applications of the principles of sorption and transport are not restricted to contaminants, but also include nitrogen, phosphorus, and trace elements including essential micronutrients, heavy metals, military explosives, pesticides, and radionuclides. Written in a very clear and easy-to-follow language by a pioneer in soil science, this book details the basic framework of the physical and chemical processes governing the transport of contaminants, trace elements, and heavy metals in soils. Highly practical, it includes laboratory methods, examples, and empirical formulations. The approach taken by the author gives you not only the fundamentals of understanding of reactive chemicals retention and their transport in soils and aquifers, but practical guidance you can put to immediate use in designing experiments and collecting data.




Handbook of Soil Science


Book Description

The Handbook of Soil Science provides a resource rich in data that gives professional soil scientists, agronomists, engineers, ecologists, biologists, naturalists, and their students a handy reference about the discipline of soil science. This handbook serves professionals seeking specific, factual reference information. Each subsection includes a description of concepts and theories; definitions; approaches; methodologies and procedures; tabular data; figures; and extensive references.




Interacting Processes in Soil Science


Book Description

Interacting Processes in Soil Science focuses on coupled processes in soil. Topics covered in this important volume include the effects of inorganic salts upon water flow, modeling of sorption, transport and transformation of organic solutes, and the effects of microorganisms on silicate clay minerals. The book presents studies and approaches that can be extended and complemented by innovative work in the future. Interacting Processes in Soil Science will be an essential reference for all researchers and students in soil science, soil and water engineering, civil and environmental engineering, earth sciences, and hydrology.




Soil-Water-Solute Process Characterization


Book Description

The practitioner or researcher often faces complex alternatives when selecting a method to characterize properties governing a soil process. After years of research and development, environmental and agricultural professionals now have an array of methods for characterizing soil processes. Well-established methods, however, may not be suitable for