Physical Sciences and Engineering Advances in Life Sciences and Oncology


Book Description

This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).




Convergence of Knowledge, Technology and Society


Book Description

This volume aims to document the most important worldwide accomplishments in converging knowledge and technology, including converging platforms, methods of convergence, societal implications, and governance in the last ten years. Convergence in knowledge, technology, and society is the accelerating, transformative interaction among seemingly distinct scientific disciplines, technologies, and communities to achieve mutual compatibility, synergism, and integration, and through this process to create added value for societal benefit. It is a movement that is recognized by scientists and thought leaders around the world as having the potential to provide far-reaching solutions to many of today’s complex knowledge, technology, and human development challenges. Four essential and interdependent convergence platforms of human activity are defined in the first part of this report: nanotechnology-biotechnology-information technology and cognitive science (“NBIC”) foundational tools; Earth-scale environmental systems; human-scale activities; and convergence methods for societal-scale activities. The report then presents the main implications of convergence for human physical potential, cognition and communication, productivity and societal outcomes, education and physical infrastructure, sustainability, and innovative and responsible governance. As a whole, the report presents a new model for convergence. To effectively take advantage of this potential, a proactive governance approach is suggested. The study identifies an international opportunity to develop and apply convergence for technological, economic, environmental, and societal benefits. The panel also suggests an opportunity in the United States for implementing a program aimed at focusing disparate R and D energies into a coherent activity - a "Societal Convergence Initiative”. This study received input from leading academic, industry, government, and NGO experts from the United States, Latin America, Europe, Asia, and Australia.







Convergence


Book Description

Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and implementation challenges in areas such as infrastructure, student education and training, faculty advancement, and inter-institutional partnerships.




Strategies to Explore Ways to Improve Efficiency While Reducing Health Care Costs


Book Description

It was my pleasure to work with Calvin on his Doctoral Study at Walden University from 2014 to 2018. According to the Institute of Medicine of the National Academy of Science (2012), the United States is the only industrialized nation in the world that does not have a universal healthcare system. Citizens in this country spend twice the amount of money on healthcare costs, while the quality of services is only ranked 31st in the world by the World Health Organization. By using system’s theory, Calvin identified those factors that are directly and inversely related to healthcare costs. If these factors go up, healthcare costs go up; if they go down, healthcare costs go down. In Calvin’s study, he documents and discusses that $667 billion dollars is wasted because we don’t manage these factors efficiently. He then identifies factors that are inversely related to healthcare costs. If they go up, healthcare costs go down; if they go down, healthcare costs go up. This represents a total of $391 billion. To correct this problem, we need to improve efficiencies to reduce costs and we need to reduce inefficiencies to lower costs with evidence-based practices that work (see Figure 3 on page 98). If only half of these issues were successfully worked on, hospital costs could be reduced by $500 billion. We would have enough funding to make certain that every person in the United States could have fully funded healthcare insurance (Gossett, et al., 2019). This is a book that is well-worth reading. -Kenneth D. Gossett, Ph.D. May 6, 2022




Research at the Intersection of the Physical and Life Sciences


Book Description

Traditionally, the natural sciences have been divided into two branches: the biological sciences and the physical sciences. Today, an increasing number of scientists are addressing problems lying at the intersection of the two. These problems are most often biological in nature, but examining them through the lens of the physical sciences can yield exciting results and opportunities. For example, one area producing effective cross-discipline research opportunities centers on the dynamics of systems. Equilibrium, multistability, and stochastic behavior-concepts familiar to physicists and chemists-are now being used to tackle issues associated with living systems such as adaptation, feedback, and emergent behavior. Research at the Intersection of the Physical and Life Sciences discusses how some of the most important scientific and societal challenges can be addressed, at least in part, by collaborative research that lies at the intersection of traditional disciplines, including biology, chemistry, and physics. This book describes how some of the mysteries of the biological world are being addressed using tools and techniques developed in the physical sciences, and identifies five areas of potentially transformative research. Work in these areas would have significant impact in both research and society at large by expanding our understanding of the physical world and by revealing new opportunities for advancing public health, technology, and stewardship of the environment. This book recommends several ways to accelerate such cross-discipline research. Many of these recommendations are directed toward those administering the faculties and resources of our great research institutions-and the stewards of our research funders, making this book an excellent resource for academic and research institutions, scientists, universities, and federal and private funding agencies.




Life Sciences and Radiation


Book Description

Scope and ideas of the workshop The workshop which took place at the University of Giessen from Oct. 3 to Oct. 7, 2002 and whose proceedings are collected in this volume started from the idea to convene a number of scientists with the aim to outline their ”visions” for the future of radiation research on the basis of their expertise. As radiation research is a very wide field restrictions were unavoidable. It was decided to concentrate this time mainly on molecular and cellular biology because it was felt that here action is par-ticularly needed. This did not exclude contributions from neighbouring fields as may be seen from the table of contents. It was clearly not planned to have a c- prehensive account of the present scientif fic achievements but the results presented should only serve as a starting point for the discussion of future lines of research, with the emphasis on the ”outreach” to other parts of life sciences. If you are interested in the future ask the young – we attempted, therefore, to invite mainly younger colleagues (with a few exceptions) who had, however, already left their marks in the field. They were asked to describe what they felt is important in radiation research and may have significant influences on other branches of life sciences. They were given the task to demonstrate what is lost for science ”if we do no longer exist”.




Office of Science and Technology Policy


Book Description







List of Journals Indexed in Index Medicus


Book Description

Issues for 1977-1979 include also Special List journals being indexed in cooperation with other institutions. Citations from these journals appear in other MEDLARS bibliographies and in MEDLING, but not in Index medicus.