Physics of Microwave Discharges


Book Description

A comprehensive and unique account of the creation of artificially ionized layers in the middle and upper atmosphere, using powerful radio waves. Major physical mechanisms associated with the formation of the ionized region are studied in detail. The main part of the author's research is devoted to problems associated with the breakdown mechanisms for radio frequency discharges in air. A special chapter deals with breakdown in intersecting pulsed beams and the effects of recombination, diffusion and atmospheric winds on the stability of the structure. The kinetics of the plasma produced are also described. The authors examine possibilities of inducing changes in the chemical composition of the upper atmosphere by means of radio frequence heating, with promising effects on the concentration of constituents such as ozone. The feasibility of using this phenomenon for; ozone healing - in connection with the ozone holes in the polar regions is investigated. The text is a timely treatment of key topics in the field of ionospheric modification.




Physics of Microwave Discharges


Book Description

A comprehensive and unique account of the creation of artificially ionized layers in the middle and upper atmosphere, using powerful radio waves. Major physical mechanisms associated with the formation of the ionized region are studied in detail. The main part of the author's research is devoted to problems associated with the breakdown mechanisms for radio frequency discharges in air. A special chapter deals with breakdown in intersecting pulsed beams and the effects of recombination, diffusion and atmospheric winds on the stability of the structure. The kinetics of the plasma produced are also described. The authors examine possibilities of inducing changes in the chemical composition of the upper atmosphere by means of radio frequence heating, with promising effects on the concentration of constituents such as ozone. The feasibility of using this phenomenon for; ozone healing - in connection with the ozone holes in the polar regions is investigated. The text is a timely treatment of key topics in the field of ionospheric modification.




Microwave Discharges


Book Description

Proceedings of a NATO ARW held in Vimeiro, Portugal, May 11-15, 1992




Microwave Discharges


Book Description

Specialists in different areas of microwave plasma physics, technique, and plasma processing cover all problems of theory, experiments, and applications of microwave discharges, and yield the state-of-the-art trends.




Physics of Collisional Plasmas


Book Description

This text is an introduction to the physics of collisional plasmas, as opposed to plasmas in space. It is intended for graduate students in physics and engineering . The first chapter introduces with progressively increasing detail, the fundamental concepts of plasma physic. The motion of individual charged particles in various configurations of electric and magnetic fields is detailed in the second chapter while the third chapter considers the collective motion of the plasma particles described according to a hydrodynamic model. The fourth chapter is most original in that it introduces a general approach to energy balance, valid for all types of discharges comprising direct current(DC) and high frequency (HF) discharges, including an applied static magnetic field. The basic concepts required in this fourth chapter have been progressively introduced in the previous chapters. The text is enriched with approx. 100 figures, and alphabetical index and 45 fully resolved problems. Mathematical and physical appendices provide complementary information or allow to go deeper in a given subject.




Gas Discharge Physics


Book Description




Introduction to the Kinetics of Glow Discharges


Book Description

Electric glow discharges (glows) can be found almost everywhere, from atmospheric electricity to modern plasma technologies, and have long been the object of research. The main purpose of this book is to provide simple illustrations of the basic physical mechanisms and principles that determine the properties of electric glow discharges. It should enable readers to successfully participate in scientific and technical progress.




Plasma Physics and Engineering


Book Description

Plasma engineering is a rapidly expanding area of science and technology with increasing numbers of engineers using plasma processes over a wide range of applications. An essential tool for understanding this dynamic field, Plasma Physics and Engineering provides a clear, fundamental introduction to virtually all aspects of modern plasma science and technology, including plasma chemistry and engineering, combustion, chemical physics, lasers, electronics, methods of material treatment, fuel conversion, and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics, many helpful numerical formulas for practical calculations, and an array of problems and concept questions.




Microwave Excited Plasmas


Book Description

The contrasting examples of microwave plasmas given in this volume demonstrate their capability of not only covering the totality of expressed needs in that particular field, but in many others. For example the ions and reactive neutral species, indispensable for the synergetic effects in etching and deposition processes can be used in metallurgical treatment, and for materials processing in general. They also have the ability to dissociate molecules and excite atoms as required in analytical chemistry where the information on the constituent concentrations is obtained through optical spectroscopy or mass spectrometry. Finally, microwave plasmas can supply the photons for laser and lighting applications. It is noteworthy that microwave plasmas cover an impressive pressure range of eight orders of magnitude from 10-3 Pa (10-5 torr) to above atmospheric pressure. The versatility of microwave plasmas, their moderate cost, and their ease of implementation particularly appeal to the industrial entrepreneur. As well as providing a review of current developments, the work proposes a synthesis on microwave discharges, laying out the corresponding physical references without developing too much plasma theory. It will be of interest both to the user, who may not be overly concerned about plasma science, and to the plasma expert, who may wish to redirect his interest towards plasma applications, such as materials processing.