Physics in Molecular Biology


Book Description

This book, first published in 2005, is a discussion for advanced physics students of how to use physics to model biological systems.




Physics of Molecular and Cellular Processes


Book Description

This is a graduate-level introduction to quantitative concepts and methods in the science of living systems. It relies on a systems approach for understanding the physical principles operating in biology. Physical phenomena are treated at the appropriate spatio-temporal scale and phenomenological equations are used in order to reflect the system of interest. Biological details enter to the degree necessary for understanding specific processes, but in many cases the approach is not reductionist. This is in line with the approach taken by physics to many other complex systems. The book bridges the gap between graduate students’ general physics courses and research papers published in professional journals. It gives students the foundations needed for independent research in biological physics and for working in collaborations aimed at quantitative biology and biomedical research. Also included are modern mathematical and theoretical physics methods, giving the student a broad knowledge of tools that can shed light on the sophisticated mechanisms brought forth by evolution in biological systems. The content covers many aspects that have been the focus of active research over the past twenty years, reflecting the authors' experience as leading researchers and teachers in this field.







Stochastic Processes in Cell Biology


Book Description

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.




Possible Health Effects of Exposure to Residential Electric and Magnetic Fields


Book Description

Can the electric and magnetic fields (EMF) to which people are routinely exposed cause health effects? This volume assesses the data and draws conclusions about the consequences of human exposure to EMF. The committee examines what is known about three kinds of health effects associated with EMF: cancer, primarily childhood leukemia; reproduction and development; and neurobiological effects. This book provides a detailed discussion of hazard identification, dose-response assessment, exposure assessment, and risk characterization for each. Possible Health Effects of Exposure to Residential Electric and Magnetic Fields also discusses the tools available to measure exposure, common types of exposures, and what is known about the effects of exposure. The committee looks at correlations between EMF exposure and carcinogenesis, mutagenesis, neurobehavioral effects, reproductive and developmental effects, effects on melatonin and other neurochemicals, and effects on bone healing and stimulated cell growth.




Integrated Molecular and Cellular Biophysics


Book Description

Biophysics represents perhaps one of the best examples of interdisciplinary research areas, where concepts and methods from disciplines such as physics, biology, b- chemistry, colloid chemistry, and physiology are integrated. It is by no means a new ?eld of study and has actually been around, initially as quantitative physiology and partly as colloid science, for over a hundred years. For a long time, biophysics has been taught and practiced as a research discipline mostly in medical schools and life sciences departments, and excellent biophysics textbooks have been published that are targeted at a biologically literate audience. With a few exceptions, it is only relatively recently that biophysics has started to be recognized as a physical science and integrated into physics departments’ curr- ula, sometimes under the new name of biological physics. In this period of cryst- lization and possible rede?nition of biophysics, there still exists some uncertainty as to what biophysics might actually represent. A particular tendency among phy- cists is to associate biophysics research with the development of powerful new te- niques that should eventually be used not by physicists to study physical processes in living matter, but by biologists in their biological investigations. There is value in that judgment, and excellent books have been published that introduce the int- ested reader to the use of physical principles for the development of new methods of investigation in life sciences.




Statistical Physics of Biomolecules


Book Description

From the hydrophobic effect to protein-ligand binding, statistical physics is relevant in almost all areas of molecular biophysics and biochemistry, making it essential for modern students of molecular behavior. But traditional presentations of this material are often difficult to penetrate. Statistical Physics of Biomolecules: An Introduction brin




Cells: Molecules and Mechanisms


Book Description

"Yet another cell and molecular biology book? At the very least, you would think that if I was going to write a textbook, I should write one in an area that really needs one instead of a subject that already has multiple excellent and definitive books. So, why write this book, then? First, it's a course that I have enjoyed teaching for many years, so I am very familiar with what a student really needs to take away from this class within the time constraints of a semester. Second, because it is a course that many students take, there is a greater opportunity to make an impact on more students' pocketbooks than if I were to start off writing a book for a highly specialized upper- level course. And finally, it was fun to research and write, and can be revised easily for inclusion as part of our next textbook, High School Biology."--Open Textbook Library.




Cell Biology by the Numbers


Book Description

A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid




Physical Biology of the Cell


Book Description

Physical Biology of the Cell is a textbook for a first course in physical biology or biophysics for undergraduate or graduate students. It maps the huge and complex landscape of cell and molecular biology from the distinct perspective of physical biology. As a key organizing principle, the proximity of topics is based on the physical concepts that