Existence Theorems for Minimal Surfaces of Non-Zero Genus Spanning a Contour


Book Description

We present a modern approach to the classical problem of Plateau based purely on differential geometric concepts. We not only reprove the classical results of Douglas but also develop a new geometric criterion on a given finite system of disjoint Jordan curves in three-dimensional Euclidean space which guarantees the existence of a minimal surface of a prescribed genus having these curves as boundary.










Introduction to the Calculus of Variations


Book Description

The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.




Introduction to the Calculus of Variations


Book Description

Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.




Isometric Embedding of Riemannian Manifolds in Euclidean Spaces


Book Description

The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.




Discrete Calculus


Book Description

This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.




Mathematical Reviews


Book Description




An Introduction to the Calculus of Variations


Book Description

Clear, rigorous introductory treatment covers applications to geometry, dynamics, and physics. It focuses upon problems with one independent variable, connecting abstract theory with its use in concrete problems. 1962 edition.




In Pursuit of the Traveling Salesman


Book Description

The story of one of the greatest unsolved problems in mathematics What is the shortest possible route for a traveling salesman seeking to visit each city on a list exactly once and return to his city of origin? It sounds simple enough, yet the traveling salesman problem is one of the most intensely studied puzzles in applied mathematics—and it has defied solution to this day. In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today’s state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets. In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.