An Introduction to the Theory of Point Processes


Book Description

Point processes and random measures find wide applicability in telecommunications, earthquakes, image analysis, spatial point patterns, and stereology, to name but a few areas. The authors have made a major reshaping of their work in their first edition of 1988 and now present their Introduction to the Theory of Point Processes in two volumes with sub-titles Elementary Theory and Models and General Theory and Structure. Volume One contains the introductory chapters from the first edition, together with an informal treatment of some of the later material intended to make it more accessible to readers primarily interested in models and applications. The main new material in this volume relates to marked point processes and to processes evolving in time, where the conditional intensity methodology provides a basis for model building, inference, and prediction. There are abundant examples whose purpose is both didactic and to illustrate further applications of the ideas and models that are the main substance of the text.




Poisson Point Processes


Book Description

"Poisson Point Processes provides an overview of non-homogeneous and multidimensional Poisson point processes and their numerous applications. Readers will find constructive mathematical tools and applications ranging from emission and transmission computed tomography to multiple target tracking and distributed sensor detection, written from an engineering perspective. A valuable discussion of the basic properties of finite random sets is included. Maximum likelihood estimation techniques are discussed for several parametric forms of the intensity function, including Gaussian sums, together with their Cramer-Rao bounds. These methods are then used to investigate: -Several medical imaging techniques, including positron emission tomography (PET), single photon emission computed tomography (SPECT), and transmission tomography (CT scans) -Various multi-target and multi-sensor tracking applications, -Practical applications in areas like distributed sensing and detection, -Related finite point processes such as marked processes, hard core processes, cluster processes, and doubly stochastic processes, Perfect for researchers, engineers and graduate students working in electrical engineering and computer science, Poisson Point Processes will prove to be an extremely valuable volume for those seeking insight into the nature of these processes and their diverse applications.




Point Processes


Book Description

There has been much recent research on the theory of point processes, i.e., on random systems consisting of point events occurring in space or time. Applications range from emissions from a radioactive source, occurrences of accidents or machine breakdowns, or of electrical impluses along nerve fibres, to repetitive point events in an individual's medical or social history. Sometimes the point events occur in space rather than time and the application here raneg from statistical physics to geography. The object of this book is to develop the applied mathemathics of point processes at a level which will make the ideas accessible both to the research worker and the postgraduate student in probability and statistics and also to the mathemathically inclined individual in another field interested in using ideas and results. A thorough knowledge of the key notions of elementary probability theory is required to understand the book, but specialised "pure mathematical" coniderations have been avoided.




Poisson Point Processes and Their Application to Markov Processes


Book Description

An extension problem (often called a boundary problem) of Markov processes has been studied, particularly in the case of one-dimensional diffusion processes, by W. Feller, K. Itô, and H. P. McKean, among others. In this book, Itô discussed a case of a general Markov process with state space S and a specified point a ∈ S called a boundary. The problem is to obtain all possible recurrent extensions of a given minimal process (i.e., the process on S \ {a} which is absorbed on reaching the boundary a). The study in this lecture is restricted to a simpler case of the boundary a being a discontinuous entrance point, leaving a more general case of a continuous entrance point to future works. He established a one-to-one correspondence between a recurrent extension and a pair of a positive measure k(db) on S \ {a} (called the jumping-in measure and a non-negative number m




Extreme Values, Regular Variation and Point Processes


Book Description

This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.




Point Process Calculus in Time and Space


Book Description

This book provides an introduction to the theory and applications of point processes, both in time and in space. Presenting the two components of point process calculus, the martingale calculus and the Palm calculus, it aims to develop the computational skills needed for the study of stochastic models involving point processes, providing enough of the general theory for the reader to reach a technical level sufficient for most applications. Classical and not-so-classical models are examined in detail, including Poisson–Cox, renewal, cluster and branching (Kerstan–Hawkes) point processes.The applications covered in this text (queueing, information theory, stochastic geometry and signal analysis) have been chosen not only for their intrinsic interest but also because they illustrate the theory. Written in a rigorous but not overly abstract style, the book will be accessible to earnest beginners with a basic training in probability but will also interest upper graduate students and experienced researchers.




Point Process Theory and Applications


Book Description

Mathematically rigorous exposition of the basic theory of marked point processes and piecewise deterministic stochastic processes Point processes are constructed from scratch with detailed proofs Includes applications with examples and exercises in survival analysis, branching processes, ruin probabilities, sports (soccer), finance and risk management, and queueing theory Accessible to a wider cross-disciplinary audience




Stochastic Analysis for Poisson Point Processes


Book Description

Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.




Point Processes and Jump Diffusions


Book Description

Develop a deep understanding and working knowledge of point-process theory as well as its applications in finance.




Statistical Inference and Simulation for Spatial Point Processes


Book Description

Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.




Recent Books