Polycrystalline Semiconductors VI


Book Description

This book comprises the contributions to the sixth conference on polycrystalline semiconductors (POLYSE). The conference covered many aspects of polycrystalline semiconductors, but was more applications-oriented than on previous occasions; thereby reflecting the rapid evolution of these technologies. POLYSE 2000 brought together research specialists from basic research, as well as from research & development engineering, all of whom are working on devices such as thin-film transistors, micro-electromechanical systems, or sensors and actuators. In particular, ten internationally recognized scientists (J. Morante, S.Périchon, M. Konagai, S. Wagner, R. Hagenbeck, D.A. Bonnell, G. Horowitz, T.Fuyuki, J. Kocka and V. Chuwere) were invited to review their work on several interesting and promising aspects of the subject: such as, micro-systems, solar cells, thin-film transistors, organic polycrystalline devices and polycrystalline ceramics.




Polycrystalline Semiconductors


Book Description

This book summarizes the most recent aspects of polycrystalline semiconductors as presented at the conference Polycrystalline Semiconductors - Grain Boundaries and Interfaces. It contains 12 review articles on selected topics written by experts in their fields and 41 complementary contributed papers. The structure, chemistry and physics of grain boundaries and other interfaces are experimentally and theoretically studied. Aspects of the technologically important polycrystalline silicon are discussed in detail. Also covered are other polycrystalline semiconductors, germanium and compound semiconductors, that are currently of interest in fundamental research and in the technology of solar cells and thin film devices. Anyone interested in polycrystalline semiconductors will be able to use this comprehensive collection to advantage. It also suggests directions for new research and development.




Thin Film Transistors: Polycrystalline silicon thin film transistors


Book Description

This is the first reference on amorphous silicon and polycrystalline silicon thin film transistors that gives a systematic global review of all major topics in the field. These volumes include sections on basic materials and substrates properties, fundamental device physics, critical fabrication processes (structures, a-Si: H, dielectric, metallization, catalytic CVD), and existing and new applications. The chapters are written by leading researchers who have extensive experience with reputed track records. Thin Film Transistors provides practical information on preparing individual functional a-Si: H TFTs and poly-Si TFTs as well as large-area TFT arrays. Also covered are basic theories on the a-Si: H TFT operations and unique material characteristics. Readers are also exposed to a wide range of existing and new applications in industries.




Heteroepitaxy of Semiconductors


Book Description

Heteroepitaxy has evolved rapidly in recent years. With each new wave of material/substrate combinations, our understanding of how to control crystal growth becomes more refined. Most books on the subject focus on a specific material or material family, narrowly explaining the processes and techniques appropriate for each. Surveying the principles common to all types of semiconductor materials, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization is the first comprehensive, fundamental introduction to the field. This book reflects our current understanding of nucleation, growth modes, relaxation of strained layers, and dislocation dynamics without emphasizing any particular material. Following an overview of the properties of semiconductors, the author introduces the important heteroepitaxial growth methods and provides a survey of semiconductor crystal surfaces, their structures, and nucleation. With this foundation, the book provides in-depth descriptions of mismatched heteroepitaxy and lattice strain relaxation, various characterization tools used to monitor and evaluate the growth process, and finally, defect engineering approaches. Numerous examples highlight the concepts while extensive micrographs, schematics of experimental setups, and graphs illustrate the discussion. Serving as a solid starting point for this rapidly evolving area, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization makes the principles of heteroepitaxy easily accessible to anyone preparing to enter the field.




Ii-vi Semiconductor Compounds


Book Description

Contents: X-Ray Characterisation of II-VI Semiconductor Materials (D Gao et al.)Electronic Structure of II-VI Semiconductors and Their Alloys (S-H Wei)Radiative Recombination Processes in Rare Earth Doped II-VI Materials (M Godlewski et al.)Nonlinear Optical Properties of Heavily Doped CdS (U Neukirch)Nanostructures of Broad Gap (II,Mn) VI Semiconductors (W Heimbrodt & O Goede)Co-Based II-VI Semimagnetic Semiconductors (A Twardowski et al.)Photoluminescence and Raman Scattering of ZnSe-ZnTe Strained Layer Superlattices (K Kumazaki)Novel Electronic Processes in Mercury-Based Superlattices (J R Meyer et al.)Strain, Pressure and Piezoelectric Effects in Strained II-VI Superlattices and Heterostructures (E Anastassakia)Electronic Structures of Strained II-VI Superlattices (T Nakayama)Devices and Applications of II-VI Compounds (S Colak)Solar Cells Based on II-VI Semiconductors (H Uda)ZnSe and Its Applications for Blue-Light Laser Diodes (M Pessa & D Ahn)Molecular Beam Epitaxy of HgCdTe for Electro-Optical Infrared Applications (J M A Cortés)and other papers Readership: Condensed matter physicists and electronic engineers. keywords:




Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors


Book Description

The reference provides interdisciplinary discussion for diverse II-VI semiconductors with a wide range of topics. The third volume of a three volume set, the book provides an up-to-date account of the present status of multifunctional II-VI semiconductors, from fundamental science and processing to their applications as various sensors, biosensors, and radiation detectors, and based on them to formulate new goals for the further research. The chapters in this volume provide a comprehensive overview of the manufacture, parameters and principles of operation of these devices. The application of these devices in various fields such medicine, agriculture, food quality control, environment monitoring and others is also considered. The analysis carried out shows the great potential of II-VI semiconductor-based sensors and detectors for these applications. Considers solid-state radiation detectors based on semiconductors of II-VI group and their applications; Analyzes the advantages of II-VI compounds to develop chemical and optical gas and ion sensors; Describes all types of biosensors based on II-VI semiconductors and gives examples of their use in various fields.




Thin Film Transistor Technologies VI


Book Description




Semiconductor Physical Electronics


Book Description

The purpose of this book is to provide the reader with a self-contained treatment of fundamen tal solid state and semiconductor device physics. The material presented in the text is based upon the lecture notes of a one-year graduate course sequence taught by this author for many years in the ·Department of Electrical Engineering of the University of Florida. It is intended as an introductory textbook for graduate students in electrical engineering. However, many students from other disciplines and backgrounds such as chemical engineering, materials science, and physics have also taken this course sequence, and will be interested in the material presented herein. This book may also serve as a general reference for device engineers in the semiconductor industry. The present volume covers a wide variety of topics on basic solid state physics and physical principles of various semiconductor devices. The main subjects covered include crystal structures, lattice dynamics, semiconductor statistics, energy band theory, excess carrier phenomena and recombination mechanisms, carrier transport and scattering mechanisms, optical properties, photoelectric effects, metal-semiconductor devices, the p--n junction diode, bipolar junction transistor, MOS devices, photonic devices, quantum effect devices, and high speed III-V semiconductor devices. The text presents a unified and balanced treatment of the physics of semiconductor materials and devices. It is intended to provide physicists and mat erials scientists with more device backgrounds, and device engineers with a broader knowledge of fundamental solid state physics.




Narrow-gap Semiconductor Photodiodes


Book Description

In this monograph, investigations of the performance of narrow-gap semiconductor photodiodes are presented, and recent progress in different IR photodiode technologies is discussed: HgCdTe photodiodes, InSb photodiodes, alternatives to HgCdTe III-V and II-VI ternary alloy photodiodes, lead chalcogenide photodiodes, and a new class of photodiodes based on two-dimensional solids. Investigations of the performance of photodiodes operated in different spectral regions are presented.




Semiconductors


Book Description

English translation of Fizika i tekhnika poluprovodnikov; covers semiconductor research in countries of the Former Soviet Union. Topics include semiconductor theory, transport phenomena in semiconductors, optics, magneto-optics, and electro-optics of semiconductors, semiconductor lasers, and semiconductor surface physics. Includes book reviews.