Polymer Analysis/Polymer Theory


Book Description

This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com




Polymer Analysis/Polymer Theory


Book Description

This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com




Polymer Analysis


Book Description

This book introduces the techniques used for the analysis of polymers. It covers the main aspects of polymer science and technology; identification, polymerization, molecular weight, structure, surface properties, degradation and mechanical properties. * Clear explanations of each analytical technique * Describes the application of techniques to the study of polymers * Encourages learning through numerous self-assessment questions and answers * Structured for flexible learning




Polymer Characterization


Book Description

Discerning the properties of polymers and polymer-based materials requires a good understanding of characterization. This revised and updated text provides a comprehensive survey of characterization methods within its simple, concise chapters. Polymer Characterization: Physical Techniques, provides an overview of a wide variety of characterization methods, which makes it an excellent textbook and reference. It starts with a description of basic polymer science, providing a solid foundation from which to understand the key physical characterization techniques. The authors explain physical principles without heavy theory and give special emphasis to the application of the techniques to polymers, with plenty of illustrations. Topics covered include molecular weight determination, molecular and structural characterization by spectroscopic techniques, morphology and structural characterization by microscopy and diffraction, and thermal analysis. This edition contains a new chapter on surface analysis as well as some revised problems and solutions. The concise treatment of each topic offers even those with little prior knowledge of the subject an accessible source to relevant, simple descriptions in a well-organized format.




Analysis of Failure in Fiber Polymer Laminates


Book Description

Written by Puck's pupil and appointed successor Martin Knops, this book presents Alfred Puck ́s failure model, which, among several other theories, predicts fracture limits best and describes the failure phenomena in FRP most realistically – as confirmed within the "World-wide Failure Exercise". Using Puck ́s model the composite engineer can follow the gradual failure process in a laminate and deduce from the results of the analysis how to improve the laminate design.




Polymers in Solution


Book Description

Polymers in Solution was written for scientists and engineers who have serious research interests in newer methods for characterization of polymer solutions, but who are not seasoned experts in the theoretical and experimental aspects of polymer science. In particular, it is assumed that the reader is not familiar with the development of theoretical notions in conformational statistics and the dynamics of chainlike molecules; how these two seemingly diverse theoretical topics are related; and the role played by polymer-solvent interactions. Chapter 1 thus presents background material that introduces most of the essential concepts, including some of the mathematical apparatus most commonly used in these areas of theory. This introduction is followed by five chapters that are more closely related to particular experimental techniques. These chapters introduce further theoretical notions as needed. Three of the chapters present con siderable detail on the experimental methods, while two other chapters deal more with the interpretation of experimental results in terms of current theories. Although neutron scattering has become an almost standard technique for the study of conformational properties of macromolecules in the solid state, there has been less emphasis on its application for characterization of polymer molecules in solution. Chapter 4 covers this growing area of application.




Mechanics of Solid Polymers


Book Description

Very few polymer mechanics problems are solved with only pen and paper today, and virtually all academic research and industrial work relies heavily on finite element simulations and specialized computer software. Introducing and demonstrating the utility of computational tools and simulations, Mechanics of Solid Polymers provides a modern view of how solid polymers behave, how they can be experimentally characterized, and how to predict their behavior in different load environments. Reflecting the significant progress made in the understanding of polymer behaviour over the last two decades, this book will discuss recent developments and compare them to classical theories. The book shows how best to make use of commercially available finite element software to solve polymer mechanics problems, introducing readers to the current state of the art in predicting failure using a combination of experiment and computational techniques. Case studies and example Matlab code are also included. As industry and academia are increasingly reliant on advanced computational mechanics software to implement sophisticated constitutive models – and authoritative information is hard to find in one place - this book provides engineers with what they need to know to make best use of the technology available. Helps professionals deploy the latest experimental polymer testing methods to assess suitability for applications Discusses material models for different polymer types Shows how to best make use of available finite element software to model polymer behaviour, and includes case studies and example code to help engineers and researchers apply it to their work




Modern Methods of Polymer Characterization


Book Description

Presents the methods used for characterization of polymers. In addition to theory and basic principles, the instrumentation and apparatus necessary for methods used to study the kinetic and thermodynamic interactions of a polymer with its environment are covered in detail. Some of the methods examined include polymer separations and characterization by size exclusion and high performance chromatography, inverse gas chromatography, osmometry, viscometry, ultracentrifugation, light scattering and spectroscopy.




Viscoelasticity of Polymers


Book Description

This book offers a comprehensive introduction to polymer rheology with a focus on the viscoelastic characterization of polymeric materials. It contains various numerical algorithms for the processing of viscoelastic data, from basic principles to advanced examples which are hard to find in the existing literature. The book takes a multidisciplinary approach to the study of the viscoelasticity of polymers, and is self-contained, including the essential mathematics, continuum mechanics, polymer science and statistical mechanics needed to understand the theories of polymer viscoelasticity. It covers recent achievements in polymer rheology, such as theoretical and experimental aspects of large amplitude oscillatory shear (LAOS), and numerical methods for linear viscoelasticity, as well as new insights into the interpretation of experimental data. Although the book is balanced between the theoretical and experimental aspects of polymer rheology, the author’s particular interest in the theoretical side will not remain hidden. Aimed at readers familiar with the mathematics and physics of engineering at an undergraduate level, the multidisciplinary approach employed enables researchers with various scientific backgrounds to expand their knowledge of polymer rheology in a systematic way.




Characterization and Analysis of Polymers


Book Description

Based on Wiley's renowned Encyclopedia of Polymer Science and Technology, this book provides coverage of key methods of characterization of the physical and chemical properties of polymers, including atomic force microscopy, chromatographic methods, laser light scattering, nuclear magnetic resonance, and thermal analysis, among others. Written by prominent scholars from around the world, this reference presents over twenty-five self -contained articles on the most used analytical techniques currently practiced in polymer science.