Computational Rheology


Book Description

Modern day high-performance computers are making available to 21st-century scientists solutions to rheological flow problems of ever-increasing complexity. Computational rheology is a fast-moving subject — problems which only 10 years ago were intractable, such as 3D transient flows of polymeric liquids, non-isothermal non-Newtonian flows or flows of highly elastic liquids through complex geometries, are now being tackled owing to the availability of parallel computers, adaptive methods and advances in constitutive modelling.Computational Rheology traces the development of numerical methods for non-Newtonian flows from the late 1960's to the present day. It begins with broad coverage of non-Newtonian fluids, including their mathematical modelling and analysis, before specific computational techniques are discussed. The application of these techniques to some important rheological flow problems of academic and industrial interest is then treated in a detailed and up-to-date exposition. Finally, the reader is kept abreast of topics at the cutting edge of research in computational applied mathematics, such as adaptivity and stochastic partial differential equations.All the topics in this book are dealt with from an elementary level and this makes the text suitable for advanced undergraduate and graduate students, as well as experienced researchers from both the academic and industrial communities.




Dynamics of Polymeric Liquids, Volume 1


Book Description

This revision of an introductory text examines Newtonian liquids and polymer fluid mechanics. It begins with a review of the main ideas of fluid dynamics as well as key points of Newtonian fluids.







Journal of Rheology


Book Description

Includes abstracts from the Journal of the Society of Rheology, Japan.







The Science and Technology of Flexible Packaging


Book Description

The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost. - Provides essential information on all aspects of multilayer films in flexible packaging, including processing, properties, materials and end use - Bridges the gap between scientific principles and practical challenges - Includes explanations to assist practitioners in overcoming challenges - Enables the reader to address new challenges, such as design for sustainability and eCommerce







Numerical Methods for Non-Newtonian Fluids


Book Description

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations.




Numerical Methods for Non-Newtonian Fluids


Book Description

Non-Newtonian flows and their numerical simulations have generated an abundant literature, as well as many publications and references to which can be found in this volume's articles. This abundance of publications can be explained by the fact that non-Newtonian fluids occur in many real life situations: the food industry, oil & gas industry, chemical, civil and mechanical engineering, the bio-Sciences, to name just a few. Mathematical and numerical analysis of non-Newtonian fluid flow models provide challenging problems to partial differential equations specialists and applied computational mathematicians alike. This volume offers investigations. Results and conclusions that will no doubt be useful to engineers and computational and applied mathematicians who are focused on various aspects of non-Newtonian Fluid Mechanics. - New review of well-known computational methods for the simulation viscoelastic and viscoplastic types - Discusses new numerical methods that have proven to be more efficient and more accurate than traditional methods - Articles that discuss the numerical simulation of particulate flow for viscoelastic fluids