Solving Polynomial Equations


Book Description

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.




Solving Systems of Polynomial Equations


Book Description

Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.




Intermediate Algebra 2e


Book Description




Numerical Polynomial Algebra


Book Description

This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.




Second-Order Sturm-Liouville Difference Equations and Orthogonal Polynomials


Book Description

This memoir presents machinery for analyzing many discrete physical situations, and should be of interest to physicists, engineers, and mathematicians. We develop a theory for regular and singular Sturm-Liouville boundary value problems for difference equations, generalizing many of the known results for differential equations. We discuss the self-adjointness of these problems as well as their abstract spectral resolution in the appropriate [italic capital]L2 setting, and give necessary and sufficient conditions for a second-order difference operator to be self-adjoint and have orthogonal polynomials as eigenfunctions.




A Polynomial Approach to Linear Algebra


Book Description

A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.




Polynomials


Book Description

Polynomials are well known for their ability to improve their properties and for their applicability in the interdisciplinary fields of engineering and science. Many problems arising in engineering and physics are mathematically constructed by differential equations. Most of these problems can only be solved using special polynomials. Special polynomials and orthonormal polynomials provide a new way to analyze solutions of various equations often encountered in engineering and physical problems. In particular, special polynomials play a fundamental and important role in mathematics and applied mathematics. Until now, research on polynomials has been done in mathematics and applied mathematics only. This book is based on recent results in all areas related to polynomials. Divided into sections on theory and application, this book provides an overview of the current research in the field of polynomials. Topics include cyclotomic and Littlewood polynomials; Descartes' rule of signs; obtaining explicit formulas and identities for polynomials defined by generating functions; polynomials with symmetric zeros; numerical investigation on the structure of the zeros of the q-tangent polynomials; investigation and synthesis of robust polynomials in uncertainty on the basis of the root locus theory; pricing basket options by polynomial approximations; and orthogonal expansion in time domain method for solving Maxwell's equations using paralleling-in-order scheme.




Polynomial Resolution Theory


Book Description

This book is the definitive work on polynomial solution theory. Starting with the simplest linear equations with complex coefficients, this book proceeds in a step by step logical manner to outline the method for solving equations of arbitrarily high degree. Polynomial Resolution Theory is an invaluable book because of its unique perspective on the age old problem of solving polynomial equations of arbitrarily high degree. First of all Hardy insists upon pursuing the subject by using general complex coefficients rather than restricting himself to real coefficients. Complex numbers are used in ordered pair (x,y) form rather than the more traditional x + iy (or x + jy) notation. As Hardy comments, "The Fundamental Theorem of Algebra makes the treatments of polynomials with complex coefficients mandatory. We must not allow applications to direct the way mathematics is presented, but must permit the mathematical results themselves determine how to present the subject. Although practical, real-world applications are important, they must not be allowed to dictate the way in which a subject is treated. Thus, although there are at present no practical applications which employ polynomials with complex coefficients, we must present this subject with complex rather than restrictive real coefficients." This book then proceeds to recast familiar results in a more consistent notation for later progress. Two methods of solution to the general cubic equation with complex coefficients are presented. Then Ferrari's solution to the general complex bicubic (fourth degree) polynomial equation is presented. After this Hardy seamlessly presents the first extension of Ferrari's work to resolving the general bicubic (sixth degree) equation with complex coefficients into two component cubic equations. Eight special cases of this equation which are solvable in closed form are developed with detailed examples. Next the resolution of the octal (eighth degree) polynomial equation is developed along with twelve special cases which are solvable in closed form. This book is appropriate for students at the advanced college algebra level who have an understanding of the basic arithmetic of the complex numbers and know how to use a calculator which handles complex numbers directly. Hardy continues to develop the theory of polynomial resolution to equations of degree forty-eight. An extensive set of appendices is useful for verifying derived results and for rigging various special case equations. This is the 3rd edition of Hardy's book.




Polynomials and Polynomial Inequalities


Book Description

After an introduction to the geometry of polynomials and a discussion of refinements of the Fundamental Theorem of Algebra, the book turns to a consideration of various special polynomials. Chebyshev and Descartes systems are then introduced, and Müntz systems and rational systems are examined in detail. Subsequent chapters discuss denseness questions and the inequalities satisfied by polynomials and rational functions. Appendices on algorithms and computational concerns, on the interpolation theorem, and on orthogonality and irrationality round off the text. The book is self-contained and assumes at most a senior-undergraduate familiarity with real and complex analysis.




Polynomials


Book Description

The book extends the high school curriculum and provides a backdrop for later study in calculus, modern algebra, numerical analysis, and complex variable theory. Exercises introduce many techniques and topics in the theory of equations, such as evolution and factorization of polynomials, solution of equations, interpolation, approximation, and congruences. The theory is not treated formally, but rather illustrated through examples. Over 300 problems drawn from journals, contests, and examinations test understanding, ingenuity, and skill. Each chapter ends with a list of hints; there are answers to many of the exercises and solutions to all of the problems. In addition, 69 "explorations" invite the reader to investigate research problems and related topics.