Porous Silicon: From Formation to Applications: Optoelectronics, Microelectronics, and Energy Technology Applications, Volume Three


Book Description

Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, sensor and energy technologies, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. This book, the third of a




Porous Silicon


Book Description

This three-volume set provides an updated, comprehensive, single reference of information on porous silicon that was previously scattered across numerous journal articles. The first volume reviews the fundamentals of silicon porosification as well as the properties and processing of porous silicon. The second volume discusses applications of porous silicon in bioengineering and in various sensors, as well as the fabrication, parameters, and applications of these devices. The third volume highlights applications of porous silicon in optoelectronics, microelectronics, and energy technologies.




Porous Silicon: From Formation to Applications: Optoelectronics, Microelectronics, and Energy Technology Applications, Volume Three


Book Description

Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, sensor and energy technologies, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. This book, the third of a




Porous Silicon: From Formation to Application: Formation and Properties, Volume One


Book Description

Porous silicon is rapidly attracting increasing interest in various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, biosensing, and energy. Porous Silicon: Formation and Properties fills a gap in the literature of the field today, providing a thorough introduction to current knowledge of the formation, processin




Porous Silicon: From Formation to Application: Biomedical and Sensor Applications, Volume Two


Book Description

Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. For example, the pores and surface chemistry of the mater




Handbook Of Porous Materials: Synthesis, Properties, Modeling And Key Applications (In 4 Volumes)


Book Description

This four-volume handbook gives a state-of-the-art overview of porous materials, from synthesis and characterization and simulation all the way to manufacturing and industrial applications. The editors, coming from academia and industry, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 37 expert authors in 14 chapters, they construct the story of porous carbons, ceramics, zeolites and polymers from varied viewpoints: surface and colloidal science, materials science, chemical engineering, and energy engineering. Volumes 1 and 2 cover the fundamentals of preparation, characterisation, and simulation of porous materials. Working from the fundamentals all the way to the practicalities of industrial production processes, the subjects include hierarchical materials, in situ and operando characterisation using NMR, X-Ray scattering and tomography, state-of-the-art molecular simulations of adsorption and diffusion in crystalline nanoporous materials, as well as the emerging areas of bio-artificing and drug delivery. Volume 3 focuses on porous materials in industrial separation applications, including adsorption separation, membrane separation, and osmotic distillation. Finally, and highly relevant to tomorrow's energy challenges, Volume 4 explains the energy engineering aspects of applying porous materials in supercapacitors, fuel cells, batteries, electrolysers and sub-surface energy applications.The text contains many high-quality colourful illustrations and examples, as well as thousands of up-to-date references to peer-reviewed articles, reports and websites for further reading. This comprehensive and well-written handbook is a must-have reference for universities, research groups and companies working with porous materials.Related Link(s)




Advances in Sensors: Reviews, Vol. 6


Book Description

The Vol. 6 of this Book Series contains 21 chapters written by 94 contributors-experts from universities and research centres, from 21 countries: Argentina, Austria, Brazil, China, Czech Republic, Denmark, Finland, France, Germany, India, Italy, Japan, Mexico, Poland, Romania, Russia, Slovenia, Switzerland, Thailand, UK and USA. This volume is devoted to various chemical sensors (sensors for various gases, nucleic acids, organic compounds, nanosensors, etc.) and biosensors. This book ensures that our readers will stay at the cutting edge of the field and get the right and effective start point and road map for the further researches and developments. By this way, they will be able to save more time for productive research activity and eliminate routine work. With the unique combination of information in this volume, the 'Advances in Sensors: Reviews' Book Series will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and end users.




Multilayer Thin Films


Book Description

This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties. Of late, graphene and graphene-related derivatives have been proven as the most versatile two-dimensional nanomaterials with superb mechanical, electrical, electronic, optical, and magnetic properties. To understand the in-depth technology, an effort has been made to explain the basics of nano dimensional materials. The importance of nano particles in various aspects of nano technology is clearly indicated. There is more than one chapter describing the use of nanomaterials as sensors. In this volume, an effort has been made to clarify the use of such materials from non-conductor to highly conducting species. It is expected that this book will be useful to the postgraduate and research students as this is a multidisciplinary subject.




Porous Silicon


Book Description

Due to the recent discovery of the room-temperature visible light emission from porous silicon (P-Si), a great interest in P-Si and related materials has arisen in the last decade of the 20th century. Crystalline (c-) Si, at the heart of integrated circuits, has an indirect band gap of 1.1 eV, which limits its application in optoelectronics. The visible light emitting P-Si may open a new field combining Si integrated technology and optoelectronics. This book is a comprehensive review of the recent research and development of porous silicon. Strong visible photoluminescence (PL) and electroluminescence (EL) from P-Si and other forms of silicon nanocrystallites (nc-Si) are reviewed. Several proposed mechanisms for the PL from porous silicon such as quantum confinement, amorphicity and molecular PL are studied. The following issues are covered: mechanisms for the visible light emission, physical structures, studies of the PL and EL, correlation of structure and optical studies, surface physics and chemistry, relationships among various forms (P-Si, a-Si, µc-Si), device applications, future developments.




Porous Silicon in Practice


Book Description

By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics, and MEMS (Micro Electro Mechanical Systems). Written by an outstanding, well-recognized expert in the field, this book provides detailed, step-by-step instructions to prepare and characterize the major types of porous silicon. It is intended for those new to the fi eld. Sampling of topics covered: * Principles of Etching Porous Silicon * Etch Cell Construction and Considerations * Photonic Crystals, Microcavities, and Bragg Stacks Etched in Silicon * Preparation of Free-standing Films and Particles of Porous Silicon * Preparation of Photoluminescent Nanoparticles from Porous Silicon * Preparation of Silicon Nanowires by Electrochemical Etch of Silicon * Surface Modifi cation Chemistry and Biochemistry * Measurement of Optical Properties * Measurement of Pore Size, Porosity, Thickness, Surface Area The whole is backed by a generous use of color photographs to illustrate the described procedures in detail, plus a bibliography of further literature pertinent to a wide range of application fi elds. For materials scientists, chemists, physicists, optical physicists, biomaterials scientists, neurobiologists, bioengineers, and graduate students in those fields, as well as those working in the semiconductor industry.