Potential Effects of Altered Precipitation Regimes on Primary Production in Terrestrial Ecosystems


Book Description

In addition to causing an increase in mean temperatures, climate change is also altering precipitation regimes across the globe. General circulation models project both latitude-dependent changes in precipitation mean and increases in precipitation variability. These changes in water availability will impact terrestrial primary productivity, the fixation of carbon dioxide into organic matter by plants. In my thesis, I addressed the following three questions: 1.) What will be the relative effect of changes in the mean and standard deviation of annual precipitation on mean annual primary production? 2.) Which ecosystems will be the most sensitive to changes in precipitation? 3.) Will increases in production variability be disproportionately greater than increases in precipitation variability? I gathered 58 time series of annual precipitation and aboveground net primary production (ANPP) from long-term ecological study sites across the globe. I quantified the sensitivity of ANPP at each site to changes in precipitation mean and variance. My results indicated that mean ANPP is about 40 times more sensitive to changes in precipitation mean than to changes in precipitation variance. I showed that semi-arid ecosystems such as shortgrass steppe in Colorado or typical steppe in Inner Mongolia may be the most sensitive to changes in precipitation mean. At these sites and several others, a 1% change in mean precipitation may result in a change in ANPP that is greater than 1%. To address how increases in interannual precipitation variability will impact the variability of ANPP, I perturbed the variability of observed precipitation time series and evaluated the impact of this perturbation on predicted ANPP variability. I found that different assumptions about the precipitation-ANPP relationship had different implications for how increases in precipitation variability will impact ANPP variability. Increases in ANPP variability were always directly proportional to increases in precipitation variability when ANPP was modeled as a simple linear or a lagged function of precipitation. However, when ANPP was modeled as a nonlinear, saturating function of precipitation, increases in ANPP variability were disproportionately low compared to increases in precipitation variability during wet years but disproportionately high during dry years. My thesis addresses an existing research gap regarding the long-term impact of increases in interannual precipitation variability on key ecosystem functioning. I showed that increases in precipitation variability will have negligible impacts on ANPP mean and have disproportionately large impacts on ANPP variability only when ANPP is a concave down, nonlinear function of precipitation. My work also demonstrates the importance of the precipitation-ANPP relationship in determining the magnitude of impacts to ANPP caused by changes in precipitation. Finally, my thesis highlights the potential for considerable changes in ANPP variability due to increases in precipitation variability.




Changing Precipitation Regimes and Terrestrial Ecosystems


Book Description

By the beginning of the twenty-first century, few people could deny the reality of global change. But while most alarm has been over increasing temperatures, other changes are occurring in precipitation patternsÑvariations that may be due in part to global warming but also to factors such as changes in atmospheric circulation and land surfaces. This volume provides a central source of information about this newly emerging area of global change research. It presents ongoing investigations into the responses of plant communities and ecosystems to the experimental manipulation of precipitation in a variety of field settingsÑparticularly in the western and central United States, where precipitation is already scarce or variable. By exploring methods that can be used to predict responses of ecosystems to changes in precipitation regimes, it demonstrates new approaches to global change research and highlights the importance of precipitation regimes in structuring ecosystems. The contributors first document the importance of precipitation, soil characteristics, and soil moisture to plant life. They then focus on the roles of precipitation amount, seasonality, and frequency in shaping varied terrestrial ecosystems: desert, sagebrush steppe, oak savanna, tall- and mixed-grass prairie, and eastern deciduous forest. These case studies illustrate many complex, tightly woven, interactive relationships among precipitation, soils, and plantsÑrelationships that will dictate the responses of ecosystems to changes in precipitation regimes. The approaches utilized in these chapters include spatial comparisons of vegetation structure and function across different ecosytems; analyses of changes in plant architecture and physiology in response to temporal variation in precipitation; experiments to manipulate water availability; and modeling approaches that characterize the relationships between climate variables and vegetation types. All seek to assess vegetation responses to major shifts in climate that appear to be occurring at present and may become the norm in the future. As the first volume to discuss and document current and cutting-edge concepts and approaches to research into changing precipitation regimes and terrestrial ecosystems, this book shows the importance of developing reliable predictions of the precipitation changes that may occur with global warming. These studies clearly demonstrate that patterns of environmental variation and the nature of vegetation responses are complex phenomena that are only beginning to be understood, and that these experimental approaches are critical for our understanding of future change.




Climate Change Science


Book Description

The warming of the Earth has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. Climate Change Science: An Analysis of Some Key Questions, a new report by a committee of the National Research Council, characterizes the global warming trend over the last 100 years, and examines what may be in store for the 21st century and the extent to which warming may be attributable to human activity.




Wetland Ecosystems


Book Description

New focused text introduces readers to wetland ecosystems and systems approaches to studying wetlands With its comprehensive coverage of wetland science, management, and restoration, Mitsch and Gosselink's Wetlands has been the premier reference on wetlands for more than two decades. Now, the coverage of specific wetland ecosystem types from earlier editions of this acclaimed work has been updated, revised, and supplemented with additional content in order to create this new text focusing exclusively on wetland ecosystems. This book now complements Wetlands, Fourth Edition. Following an introduction to ecosystems in general and wetland ecosystems in particular, Wetland Ecosystems examines the major types of wetlands found throughout the world: coastal wetlands, freshwater marshes and forested swamps, and peatlands. The final chapter reviews three fundamental systems approaches to studying wetlands: mesocosms, full-scale experimental ecosystems, and mathematical modeling. This new text features: Updated descriptions of the hydrology, biogeochemistry, and biology of the main types of wetlands found in the world New content introducing general ecosystems, wetland ecosystems, whole ecosystem and mesocosm experiments with wetlands, and systems ecology and modeling A detailed description of the ecosystem services provided by wetlands A broad international scope, including many examples of wetlands located outside North America Two new coauthors offering new perspectives and additional insights into the latest ecosystem and modeling techniques An abundance of illustrations helps readers understand how different biological communities and the abiotic environment in wetland ecosystems interact and function. Tables and text boxes provide at-a-glance summaries of key information. Lastly, each chapter concludes with a list of recommended readings. This text has been designed as an introduction for students and professionals in wetland ecology and management, general ecology, environmental science, and natural resource management.




Stream Ecosystems in a Changing Environment


Book Description

Stream Ecosystems in a Changing Environment synthesizes the current understanding of stream ecosystem ecology, emphasizing nutrient cycling and carbon dynamics, and providing a forward-looking perspective regarding the response of stream ecosystems to environmental change. Each chapter includes a section focusing on anticipated and ongoing dynamics in stream ecosystems in a changing environment, along with hypotheses regarding controls on stream ecosystem functioning. The book, with its innovative sections, provides a bridge between papers published in peer-reviewed scientific journals and the findings of researchers in new areas of study. Presents a forward-looking perspective regarding the response of stream ecosystems to environmental change Provides a synthesis of the latest findings on stream ecosystems ecology in one concise volume Includes thought exercises and discussion activities throughout, providing valuable tools for learning Offers conceptual models and hypotheses to stimulate conversation and advance research




The European Nitrogen Assessment


Book Description

Presenting the first continental-scale assessment of reactive nitrogen in the environment, this book sets the related environmental problems in context by providing a multidisciplinary introduction to the nitrogen cycle processes. Issues of upscaling from farm plot and city to national and continental scales are addressed in detail with emphasis on opportunities for better management at local to global levels. The five key societal threats posed by reactive nitrogen are assessed, providing a framework for joined-up management of the nitrogen cycle in Europe, including the first cost-benefit analysis for different reactive nitrogen forms and future scenarios. Incorporating comprehensive maps, a handy technical synopsis and a summary for policy makers, this landmark volume is an essential reference for academic researchers across a wide range of disciplines, as well as stakeholders and policy makers. It is also a valuable tool in communicating the key environmental issues and future challenges to the wider public.




Invasive Species in Forests and Rangelands of the United States


Book Description

This open access book describes the serious threat of invasive species to native ecosystems. Invasive species have caused and will continue to cause enormous ecological and economic damage with ever increasing world trade. This multi-disciplinary book, written by over 100 national experts, presents the latest research on a wide range of natural science and social science fields that explore the ecology, impacts, and practical tools for management of invasive species. It covers species of all taxonomic groups from insects and pathogens, to plants, vertebrates, and aquatic organisms that impact a diversity of habitats in forests, rangelands and grasslands of the United States. It is well-illustrated, provides summaries of the most important invasive species and issues impacting all regions of the country, and includes a comprehensive primary reference list for each topic. This scientific synthesis provides the cultural, economic, scientific and social context for addressing environmental challenges posed by invasive species and will be a valuable resource for scholars, policy makers, natural resource managers and practitioners.




Handbook of Climate Change Mitigation


Book Description

There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Climate Change and Societal Issues, Impacts of Climate Change, Energy Conservation, Alternative Energies, Advanced Combustion, Advanced Technologies, and Education and Outreach.







Terrestrial Ecosystems and Biodiversity


Book Description

Authored by world-class scientists and scholars, The Handbook of Natural Resources, Second Edition, is an excellent reference for understanding the consequences of changing natural resources to the degradation of ecological integrity and the sustainability of life. Based on the content of the bestselling and CHOICE-awarded Encyclopedia of Natural Resources, this new edition demonstrates the major challenges that the society is facing for the sustainability of all well-being on the planet Earth. The experience, evidence, methods, and models used in studying natural resources are presented in six stand-alone volumes, arranged along the main systems of land, water, and air. It reviews state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of remote sensing and geospatial data with field-based measurements in the study of natural resources. Volume 1, Terrestrial Ecosystems and Biodiversity, provides fundamental information on terrestrial ecosystems, approaches to monitoring, and impacts of climate change on natural vegetation and forests. New to this edition are discussions on biodiversity conservation, gross and net primary production, soil microbiology, land surface phenology, and decision support systems. This volume demonstrates the key processes, methods, and models used through many case studies from around the world. Written in an easy-to-reference manner, The Handbook of Natural Resources, Second Edition, as individual volumes or as a complete set, is an essential reading for anyone looking for a deeper understanding of the science and management of natural resources. Public and private libraries, educational and research institutions, scientists, scholars, and resource managers will benefit enormously from this set. Individual volumes and chapters can also be used in a wide variety of both graduate and undergraduate courses in environmental science and natural science at different levels and disciplines, such as biology, geography, earth system science, and ecology.