The Practice of Statistics in the Life Sciences


Book Description

This remarkably engaging textbook gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exercises drawn from across the life sciences, including the fields of nursing, public health, and allied health. Based on David Moore’s The Basic Practice of Statistics, PSLS mirrors that #1 bestseller’s signature emphasis on statistical thinking, real data, and what statisticians actually do. The new edition includes new and updated exercises, examples, and samples of real data, as well as an expanded range of media tools for students and instructors.




Mathematical Statistics with Applications in R


Book Description

Mathematical Statistics with Applications in R, Second Edition, offers a modern calculus-based theoretical introduction to mathematical statistics and applications. The book covers many modern statistical computational and simulation concepts that are not covered in other texts, such as the Jackknife, bootstrap methods, the EM algorithms, and Markov chain Monte Carlo (MCMC) methods such as the Metropolis algorithm, Metropolis-Hastings algorithm and the Gibbs sampler. By combining the discussion on the theory of statistics with a wealth of real-world applications, the book helps students to approach statistical problem solving in a logical manner.This book provides a step-by-step procedure to solve real problems, making the topic more accessible. It includes goodness of fit methods to identify the probability distribution that characterizes the probabilistic behavior or a given set of data. Exercises as well as practical, real-world chapter projects are included, and each chapter has an optional section on using Minitab, SPSS and SAS commands. The text also boasts a wide array of coverage of ANOVA, nonparametric, MCMC, Bayesian and empirical methods; solutions to selected problems; data sets; and an image bank for students.Advanced undergraduate and graduate students taking a one or two semester mathematical statistics course will find this book extremely useful in their studies. - Step-by-step procedure to solve real problems, making the topic more accessible - Exercises blend theory and modern applications - Practical, real-world chapter projects - Provides an optional section in each chapter on using Minitab, SPSS and SAS commands - Wide array of coverage of ANOVA, Nonparametric, MCMC, Bayesian and empirical methods




Introduction to the Practice of Statistics


Book Description

The new Sixth Edition brings the acclaimed IPS approach to a new generation, with a number of enhancements in the text and with breakthrough media tools for instructors and students. It demonstrates how statistical techniques are used to solve real-world problems, combining real data and applications with innovative pedagogy, both in the text and via electronic media. New Format Options Introduction to the Practice of Statistics, Sixth Edition is available as: • A core book containing the first 13 chapters in hardcover (1-4292-1622-0) or paperback (1-4292-1621-2). Companion chapters 14-17 are available on the book's CD and web site. • Extended Version (hardcover; includes chapters 1-15): 1-4292-1623-9




Introduction to Statistical Quality Control


Book Description

Once solely the domain of engineers, quality control has become a vital business operation used to increase productivity and secure competitive advantage. Introduction to Statistical Quality Control offers a detailed presentation of the modern statistical methods for quality control and improvement. Thorough coverage of statistical process control (SPC) demonstrates the efficacy of statistically-oriented experiments in the context of process characterization, optimization, and acceptance sampling, while examination of the implementation process provides context to real-world applications. Emphasis on Six Sigma DMAIC (Define, Measure, Analyze, Improve and Control) provides a strategic problem-solving framework that can be applied across a variety of disciplines. Adopting a balanced approach to traditional and modern methods, this text includes coverage of SQC techniques in both industrial and non-manufacturing settings, providing fundamental knowledge to students of engineering, statistics, business, and management sciences. A strong pedagogical toolset, including multiple practice problems, real-world data sets and examples, and incorporation of Minitab statistics software, provides students with a solid base of conceptual and practical knowledge.




Online Statistics Education


Book Description

Online Statistics: An Interactive Multimedia Course of Study is a resource for learning and teaching introductory statistics. It contains material presented in textbook format and as video presentations. This resource features interactive demonstrations and simulations, case studies, and an analysis lab.This print edition of the public domain textbook gives the student an opportunity to own a physical copy to help enhance their educational experience. This part I features the book Front Matter, Chapters 1-10, and the full Glossary. Chapters Include:: I. Introduction, II. Graphing Distributions, III. Summarizing Distributions, IV. Describing Bivariate Data, V. Probability, VI. Research Design, VII. Normal Distributions, VIII. Advanced Graphs, IX. Sampling Distributions, and X. Estimation. Online Statistics Education: A Multimedia Course of Study (http: //onlinestatbook.com/). Project Leader: David M. Lane, Rice University.




Frontiers in Massive Data Analysis


Book Description

Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.




SAS Programming for R Users


Book Description

SAS Programming for R Users, based on the free SAS Education course of the same name, is designed for experienced R users who want to transfer their programming skills to SAS. Emphasis is on programming and not statistical theory or interpretation. You will learn how to write programs in SAS that replicate familiar functions and capabilities in R. This book covers a wide range of topics including the basics of the SAS programming language, how to import data, how to create new variables, random number generation, linear modeling, Interactive Matrix Language (IML), and many other SAS procedures. This book also explains how to write R code directly in the SAS code editor for seamless integration between the two tools. Exercises are provided at the end of each chapter so that you can test your knowledge and practice your programming skills.




Computer Organization and Design


Book Description

Rev. ed. of: Computer organization and design / John L. Hennessy, David A. Patterson. 1998.




Introduction to the Practice of Statistics


Book Description

With this updated new edition, the market-leading Introduction to the Practice of Statistics (IPS) remains unmatched in its ability to show how statisticians actually work. Its focus on data analysis and critical thinking, step-by-step pedagogy, and applications in a variety of professions and disciplines make it exceptionally engaging to students learning core statistical ideas.




Statistics for Research


Book Description

Praise for the Second Edition "Statistics for Research has other fine qualities besides superior organization. The examples and the statistical methods are laid out with unusual clarity by the simple device of using special formats for each. The book was written with great care and is extremely user-friendly."—The UMAP Journal Although the goals and procedures of statistical research have changed little since the Second Edition of Statistics for Research was published, the almost universal availability of personal computers and statistical computing application packages have made it possible for today's statisticians to do more in less time than ever before. The Third Edition of this bestselling text reflects how the changes in the computing environment have transformed the way statistical analyses are performed today. Based on extensive input from university statistics departments throughout the country, the authors have made several important and timely revisions, including: Additional material on probability appears early in the text New sections on odds ratios, ratio and difference estimations, repeated measure analysis, and logistic regression New examples and exercises, many from the field of the health sciences Printouts of computer analyses on all complex procedures An accompanying Web site illustrating how to use SAS® and JMP® for all procedures The text features the most commonly used statistical techniques for the analysis of research data. As in the earlier editions, emphasis is placed on how to select the proper statistical procedure and how to interpret results. Whenever possible, to avoid using the computer as a "black box" that performs a mysterious process on the data, actual computational procedures are also given. A must for scientists who analyze data, professionals and researchers who need a self-teaching text, and graduate students in statistical methods, Statistics for Research, Third Edition brings the methodology up to date in a very practical and accessible way.