Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 38 (thesis year 1993) a total of 13,787 thesis titles from 22 Canadian and 164 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 38 reports theses submitted in 1993, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.







A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1


Book Description

The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the ph...




Paper


Book Description




Masters Theses in the Pure and Applied Sciences


Book Description

Cited in Sheehy, Chen, and Hurt . Volume 38 (thesis year 1993) reports a total of 13,787 thesis titles from 22 Canadian and 164 US universities. As in previous volumes, thesis titles are arranged by discipline and by university within each discipline. Any accredited university or college with a grad




Characteristics of a Turbulent Wake Under Gradient Flow Conditions


Book Description

Results are given of experimental studies of turbulent wakes in the plane and axisymmetric cases under positive and negative longitudinal pressure gradients and an approximate method of calculating such wakes is discussed. A positive longitudinal pressure gradient promotes more rapid decay of a turbulent wake than in the zero gradient case, whereas the opposite is true for a negative pressure gradient. (Author).




Two-Dimensional Turbulent Wakes


Book Description

The equations of mean motion indicate that two-dimensional turbulent wakes, when subjected to appropriately tailored adverse pressure gradients, can be self-preserving. An experimental examination of two nearly self-preserving wakes is reported. Mean velocity, longitudinal and lateral turbulence intensity, intermittency and shear stress distributions were measured and compared with Townsend's data from the small-deficit undistorted wake. In comparison with the undistorted case, the present wakes have slightly lower turbulent intensities and significantly lower shear stresses, all quantities being nondimensionalized by a local velocity scale taken as the maximum mean velocity deficit. A consideration of the reasons for the shear stress reduction leads to an expression from which the shear stresses in any symmetrical free equilibrium shear flow can be found. This relationship is used to calculate the rate of growth in the measured wakes, with reasonable success. (Author).