AI, Edge and IoT-based Smart Agriculture


Book Description

AI, Edge, and IoT Smart Agriculture integrates applications of IoT, edge computing, and data analytics for sustainable agricultural development and introduces Edge of Thing-based data analytics and IoT for predictability of crop, soil, and plant disease occurrence for improved sustainability and increased profitability. The book also addresses precision irrigation, precision horticulture, greenhouse IoT, livestock monitoring, IoT ecosystem for agriculture, mobile robot for precision agriculture, energy monitoring, storage management, and smart farming. The book provides an overarching focus on sustainable environment and sustainable economic development through smart and e-agriculture. Providing a medium for the exchange of expertise and inspiration, contributions from both smart agriculture and data mining researchers around the world provide foundational insights. The book provides practical application opportunities for the resolution of real-world problems, including contributions from the data mining, data analytics, Edge of Things, and cloud research communities working in the farming production sector. The book offers broad coverage of the concepts, themes, and instruments of this important and evolving area of IOT-based agriculture, Edge of Things and cloud-based farming, Greenhouse IOT, mobile agriculture, sustainable agriculture, and big data analytics in agriculture toward smart farming. - Integrates sustainable agriculture, Greenhouse IOT, precision agriculture, crops monitoring, crops controlling to prediction, livestock monitoring, and farm management - Presents data mining techniques for precision agriculture, including weather prediction, plant disease prediction, and decision support for crop and soil selection - Promotes the importance and uses in managing the agro ecosystem for food security - Emphasizes low energy usage options for low cost and environmental sustainability




Predictive Analytics in Smart Agriculture


Book Description

Predictive Analysis in Smart Agricultureexplores computational engineering techniques and applications in agriculture development. Recent technologies such as cloud computing, IoT, big data, and machine learning are focused on for smart agricultural engineering. The book also provides a case-oriented approach for IoT-based agricultural systems. This book deals with all aspects of smart agriculture with state-of-the-art predictive analysis in the complete 360-degree view spectrum. The book includes the concepts of urban and vertical farming using Agro IoT systems and renewable energy sources for modern agriculture trends. It discusses the real-world challenges, complexities in Agro IoT, and advantages of incorporating smart technology. It also presents the rapid advancement of the technologies in the existing Agri model by applying the various techniques. Novel architectural solutions in smart agricultural engineering are the core aspects of this book. Several predictive analysis tools and smart agriculture are also incorporated. This book can be used as a textbook for students in predictive analysis, agriculture engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in cloud computing, IoT, big data, machine learning, and deep learning working on smart agriculture applications.




Smart Agriculture


Book Description

This book endeavours to highlight the untapped potential of Smart Agriculture for the innovation and expansion of the agriculture sector. The sector shall make incremental progress as it learns from associations between data over time through Artificial Intelligence, deep learning and Internet of Things applications. The farming industry and Smart agriculture develop from the stringent limits imposed by a farm's location, which in turn has a series of related effects with respect to supply chain management, food availability, biodiversity, farmers' decision-making and insurance, and environmental concerns among others. All of the above-mentioned aspects will derive substantial benefits from the implementation of a data-driven approach under the condition that the systems, tools and techniques to be used have been designed to handle the volume and variety of the data to be gathered. Contributions to this book have been solicited with the goal of uncovering the possibilities of engaging agriculture with equipped and effective profound learning algorithms. Most agricultural research centres are already adopting Internet of Things for the monitoring of a wide range of farm services, and there are significant opportunities for agriculture administration through the effective implementation of Machine Learning, Deep Learning, Big Data and IoT structures.




IoT and Analytics for Agriculture


Book Description

This book presents recent findings on virtually every aspect of wireless IoT and analytics for agriculture. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. In turn, it addresses the latest innovations, trends, and concerns, as well as practical challenges encountered and solutions adopted in the fields of IoT and analytics for agriculture. In closing, it explores a range of applications, including: intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems.




Predictive Analytics in Smart Agriculture


Book Description

Predictive Analysis in Smart Agricultureexplores computational engineering techniques and applications in agriculture development. Recent technologies such as cloud computing, IoT, big data, and machine learning are focused on for smart agricultural engineering. The book also provides a case-oriented approach for IoT-based agricultural systems. This book deals with all aspects of smart agriculture with state-of-the-art predictive analysis in the complete 360-degree view spectrum. The book includes the concepts of urban and vertical farming using Agro IoT systems and renewable energy sources for modern agriculture trends. It discusses the real-world challenges, complexities in Agro IoT, and advantages of incorporating smart technology. It also presents the rapid advancement of the technologies in the existing Agri model by applying the various techniques. Novel architectural solutions in smart agricultural engineering are the core aspects of this book. Several predictive analysis tools and smart agriculture are also incorporated. This book can be used as a textbook for students in predictive analysis, agriculture engineering, precision farming, and smart agriculture. It can also be a reference book for practicing professionals in cloud computing, IoT, big data, machine learning, and deep learning working on smart agriculture applications.




Smart Agricultural Services Using Deep Learning, Big Data, and IoT


Book Description

The agricultural sector can benefit immensely from developments in the field of smart farming. However, this research area focuses on providing specific fixes to particular situations and falls short on implementing data-driven frameworks that provide large-scale benefits to the industry as a whole. Using deep learning can bring immense data and improve our understanding of various earth sciences and improve farm services to yield better crop production and profit. Smart Agricultural Services Using Deep Learning, Big Data, and IoT is an essential publication that focuses on the application of deep learning to agriculture. While highlighting a broad range of topics including crop models, cybersecurity, and sustainable agriculture, this book is ideally designed for engineers, programmers, software developers, agriculturalists, farmers, policymakers, researchers, academicians, and students.




Smart Agriculture Automation Using Advanced Technologies


Book Description

This book addresses the challenges for developing and emerging trends in Internet-of-Things (IoT) for smart agriculture platforms. It also describes data analytics & machine learning, cloud architecture, automation & robotics and aims to overcome existing barriers for smart agriculture with commercial viability. It discusses IoT-based monitoring systems for analyzing the crop environment, and methods for improving the efficiency of decision-making based on the analysis of harvest statistics. The book explores a range of applications including intelligent field monitoring, intelligent data processing and sensor technologies, predictive analysis systems, crop monitoring, and weather data-enabled analysis in IoT agro-systems. This volume will be helpful for engineering and technology experts and researchers, as well as for policy-makers.




Big Data in Context


Book Description

This book is open access under a CC BY 4.0 license. This book sheds new light on a selection of big data scenarios from an interdisciplinary perspective. It features legal, sociological and economic approaches to fundamental big data topics such as privacy, data quality and the ECJ’s Safe Harbor decision on the one hand, and practical applications such as smart cars, wearables and web tracking on the other. Addressing the interests of researchers and practitioners alike, it provides a comprehensive overview of and introduction to the emerging challenges regarding big data.All contributions are based on papers submitted in connection with ABIDA (Assessing Big Data), an interdisciplinary research project exploring the societal aspects of big data and funded by the German Federal Ministry of Education and Research.This volume was produced as a part of the ABIDA project (Assessing Big Data, 01IS15016A-F). ABIDA is a four-year collaborative project funded by the Federal Ministry of Education and Research. However the views and opinions expressed in this book reflect only the authors’ point of view and not necessarily those of all members of the ABIDA project or the Federal Ministry of Education and Research.




Artificial Intelligence and Smart Agriculture Technology


Book Description

This book was created with the intention of informing an international audience about the latest technological aspects for developing smart agricultural applications. As artificial intelligence (AI) takes the main role in this, the majority of the chapters are associated with the role of AI and data analytics components for better agricultural applications. The first two chapters provide alternative, wide reviews of the use of AI, robotics, and the Internet of Things as effective solutions to agricultural problems. The third chapter looks at the use of blockchain technology in smart agricultural scenarios. In the fourth chapter, a future view is provided of an Internet of Things-oriented sustainable agriculture. Next, the fifth chapter provides a governmental evaluation of advanced farming technologies, and the sixth chapter discusses the role of big data in smart agricultural applications. The role of the blockchain is evaluated in terms of an industrial view under the seventh chapter, and the eighth chapter provides a discussion of data mining and data extraction, which is essential for better further analysis by smart tools. The ninth chapter evaluates the use of machine learning in food processing and preservation, which is a critical issue for dealing with issues concerns regarding insufficient foud sources. The tenth chapter also discusses sustainability, and the eleventh chapter focuses on the problem of plant disease prediction, which is among the critical agricultural issues. Similarly, the twelfth chapter considers the use of deep learning for classifying plant diseases. Finally, the book ends with a look at cyber threats to farming automation in the thirteenth chapter and a case study of India for a better, smart, and sustainable agriculture in the fourteenth chapter. This book presents the most critical research topics of today’s smart agricultural applications and provides a valuable view for both technological knowledge and ability that will be helpful to academicians, scientists, students who are the future of science, and industrial practitioners who collaborate with academia.




Internet of Things and Big Data Analytics Toward Next-Generation Intelligence


Book Description

This book highlights state-of-the-art research on big data and the Internet of Things (IoT), along with related areas to ensure efficient and Internet-compatible IoT systems. It not only discusses big data security and privacy challenges, but also energy-efficient approaches to improving virtual machine placement in cloud computing environments. Big data and the Internet of Things (IoT) are ultimately two sides of the same coin, yet extracting, analyzing and managing IoT data poses a serious challenge. Accordingly, proper analytics infrastructures/platforms should be used to analyze IoT data. Information technology (IT) allows people to upload, retrieve, store and collect information, which ultimately forms big data. The use of big data analytics has grown tremendously in just the past few years. At the same time, the IoT has entered the public consciousness, sparking people’s imaginations as to what a fully connected world can offer. Further, the book discusses the analysis of real-time big data to derive actionable intelligence in enterprise applications in several domains, such as in industry and agriculture. It explores possible automated solutions in daily life, including structures for smart cities and automated home systems based on IoT technology, as well as health care systems that manage large amounts of data (big data) to improve clinical decisions. The book addresses the security and privacy of the IoT and big data technologies, while also revealing the impact of IoT technologies on several scenarios in smart cities design. Intended as a comprehensive introduction, it offers in-depth analysis and provides scientists, engineers and professionals the latest techniques, frameworks and strategies used in IoT and big data technologies.