Primer to Neuromorphic Computing


Book Description

Primer to Neuromorphic Computing highlights critical and ongoing research into the diverse applications of neuromorphic computing. It includes an overview of primary scientific concepts for the research topic of neuromorphic computing, such as neurons as computational units, artificial intelligence, machine learning, and neuromorphic models. It also discusses the fundamental design method and organization of neuromorphic architecture. Hardware for neuromorphic systems can be developed by exploiting the magnetic properties of different materials. These systems are more energy efficient and enable faster computation . Magnetic tunnel junctions and magnetic textures can be employed to act as neurons and synapses. Neuromorphic systems have general intelligence like humans as they can apply knowledge gained in one domain to other domains.




Primer to Neuromorphic Computing


Book Description

Primer to Neuromorphic Computing highlights critical and ongoing research into the diverse applications of neuromorphic computing. It includes an overview of primary scientific concepts for the research topic of neuromorphic computing, such as neurons as computational units, artificial intelligence, machine learning, and neuromorphic models. It also discusses the fundamental design method and organization of neuromorphic architecture. Hardware for neuromorphic systems can be developed by exploiting the magnetic properties of different materials. These systems are more energy efficient and enable faster computation . Magnetic tunnel junctions and magnetic textures can be employed to act as neurons and synapses. Neuromorphic systems have general intelligence like humans as they can apply knowledge gained in one domain to other domains. - Discusses potential neuromorphic applications in computing - Presents current trends and models in neuromorphic computing and neural network hardware architectures - Shows the development of novel devices and hardware to enable neuromorphic computing - Offers information about computation and learning principles for neuromorphic systems - Provides information about Neuromorphic implementations of neurobiological learning algorithms - Discusses biologically inspired neuromorphic systems and devices (including adaptive bio interfacing and hybrid systems consisting of living matter and synthetic matter)




The 1989 Neuro-computing Bibliography


Book Description

This comprehensive bibliography provides a functional, flexible tool for researchers and engineers in neurocomputing.




Handbook of Neural Computing Applications


Book Description

Handbook of Neural Computing Applications is a collection of articles that deals with neural networks. Some papers review the biology of neural networks, their type and function (structure, dynamics, and learning) and compare a back-propagating perceptron with a Boltzmann machine, or a Hopfield network with a Brain-State-in-a-Box network. Other papers deal with specific neural network types, and also on selecting, configuring, and implementing neural networks. Other papers address specific applications including neurocontrol for the benefit of control engineers and for neural networks researchers. Other applications involve signal processing, spatio-temporal pattern recognition, medical diagnoses, fault diagnoses, robotics, business, data communications, data compression, and adaptive man-machine systems. One paper describes data compression and dimensionality reduction methods that have characteristics, such as high compression ratios to facilitate data storage, strong discrimination of novel data from baseline, rapid operation for software and hardware, as well as the ability to recognized loss of data during compression or reconstruction. The collection can prove helpful for programmers, computer engineers, computer technicians, and computer instructors dealing with many aspects of computers related to programming, hardware interface, networking, engineering or design.




Neuromorphic Photonic Devices and Applications


Book Description

Neuromorphic Photonic Devices and Applications synthesizes the most critical advances in photonic neuromorphic models, photonic material platforms and accelerators for neuromorphic computing. The book discusses fields and applications that can leverage these new platforms. A brief review of the historical development of the field is followed by a discussion of the emerging 2D photonic materials platforms and recent work in implementing neuromorphic models and 3D neuromorphic systems. The application of artificial intelligence (AI), such as neuromorphic models to inverse design neuromorphic materials and devices and predict performance challenges is discussed throughout. Finally, a comprehensive overview of the applications of neuromorphic photonic technologies and the challenges, opportunities and future prospects is discussed, making the book suitable for researchers and practitioners in academia and R&D in the multidisciplinary field of photonics. - Includes overview of primary scientific concepts for the research topic of neuromorphic photonics such as neurons as computational units, artificial intelligence, machine learning and neuromorphic models - Reviews the latest advances in photonic materials, device platforms and enabling technology drivers of neuromorphic photonics - Discusses potential applications in computing and optical communications




Phase Change Materials-Based Photonic Computing


Book Description

Phase Change Materials-Based Photonic Computing provides a clear introduction to the field, introducing concepts of photonics, computing, phase change materials and future outlooks. Phase change materials are well known and studied in many contexts, and photonics is a longstanding field, with photonic neuromorphic computing recently gathering interest. However, the two fields are disparate and few people understand the key concepts needed to integrate the two. This book will be the first to do so in this promising field. It is suitable for researchers and practitioners in academia and industry working in the disciplines of materials science and engineering, electrical engineering and computing. - Introduces the advanced fundamental concepts of photonics computing and phase change materials - Reviews the remaining challenges to translation, opportunities and future outlooks - Addresses definitions, historical context, foundational concepts and the latest advances of phase change materials-based photonics computing




Neuromorphic Photonics


Book Description

This book sets out to build bridges between the domains of photonic device physics and neural networks, providing a comprehensive overview of the emerging field of "neuromorphic photonics." It includes a thorough discussion of evolution of neuromorphic photonics from the advent of fiber-optic neurons to today’s state-of-the-art integrated laser neurons, which are a current focus of international research. Neuromorphic Photonics explores candidate interconnection architectures and devices for integrated neuromorphic networks, along with key functionality such as learning. It is written at a level accessible to graduate students, while also intending to serve as a comprehensive reference for experts in the field.




Security Opportunities in Nano Devices and Emerging Technologies


Book Description

The research community lacks both the capability to explain the effectiveness of existing techniques and the metrics to predict the security properties and vulnerabilities of the next generation of nano-devices and systems. This book provides in-depth viewpoints on security issues and explains how nano devices and their unique properties can address the opportunities and challenges of the security community, manufacturers, system integrators, and end users. This book elevates security as a fundamental design parameter, transforming the way new nano-devices are developed. Part 1 focuses on nano devices and building security primitives. Part 2 focuses on emerging technologies and integrations.




Computational Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications


Book Description

"This book argues that computational models in behavioral neuroscience must be taken with caution, and advocates for the study of mathematical models of existing theories as complementary to neuro-psychological models and computational models"--




Genetic Programming Theory and Practice XVIII


Book Description

This book, written by the foremost international researchers and practitioners of genetic programming (GP), explores the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year’s edition, the topics covered include many of the most important issues and research questions in the field, such as opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms. The book includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.