Principles of Electrical Engineering Materials and Devices


Book Description

This text offers comprehensive discussions of topics which are important to both electrical engineering and materials science students. The chapters are designed so that instructors can teach out of sequence or skip topics if desired.







Principles of Electronic Materials and Devices


Book Description

Principles of Electronic Materials and Devices, Third Edition, is a greatly enhanced version of the highly successful text Principles of Electronic Materials and Devices, Second Edition. It is designed for a first course on electronic materials given in Materials Science and Engineering, Electrical Engineering, and Physics and Engineering Physics Departments at the undergraduate level. The third edition has numerous revisions that include more beautiful illustrations and photographs, additional sections, more solved problems, worked examples, and end-of-chapter problems with direct engineering applications. The revisions have improved the rigor without sacrificing the original semiquantitative approach that both the students and instructors liked and valued. Some of the new end-of-chapter problems have been especially selected to satisfy various professional engineering design requirements for accreditation across international borders. Advanced topics have been collected under Additional Topics, which are not necessary in a short introductory treatment.




Principles of Electronic Materials and Devices


Book Description

Principles of Electronic Materials and Devices, Second Edition, is a greatly enhanced version of the highly successful text Principles of Electrical Engineering Materials and Devices. It is designed for a first course on electronic materials given in Electrical Engineering, Materials Science and Engineering, and Physics Departments at the undergraduate level. The second edition has numerous revisions, additional sections such as "Phonons" and "Optoelectronic Materials and Devices", more solved problems, and a completely new chapter on "Optical Properties of Materials". The revisions have improved the rigor without sacrificing the original semiquantitative approach that the students liked. For example, the thermoelectric effect now includes the Mott-Jones index (x) which is normally treated at the graduate level but has been introduced here through a semiquantitative discussion to explain the true sign of the Seebeck coefficient in metals (one of the most difficult graduate topics in quantum mechanics of metals). The problems have also been updated and various difficult figures have been redrafted to enhance the pedagogy. The second edition includes the Electronic Materials and Devices CD-ROM. The CD includes color overhead transparency diagrams that can be printed by instructors and students on any color printer; an illustrated dictionary of electronic materials and devices; numerous selected topics and solved problems. The text with its Selected Topics can also serve as a first course in Materials Science aimed at electrical engineers and engineering physics students. It is suitable for both one- and two-semester courses. By focusing only on those topics relevant to materials that make up electronic and optoelectronic devices, the book offers students a deeper and more meaningful discussion of this material than is offered in general materials science textbooks. The coverage is up-to-date and the applications are of special relevance to students of electronics, materials science and engineering physics.The solutions manual for the second edition is available from the publisher, the McGraw-Hill website and also from the author's website at http://ElectronicMaterials.Usask.CA.







Principles of Electrical Engineering Materials and Devices


Book Description

This title is designed for a course on electrical engineering materials. The author has not added or removed sections to render this edition a second edition. However, a number of sections, illustrations, examples and problems have been revised and updated in the current revised edition. The revisions have improved the rigour without sacrificing the original semiquantitative approach. For example, the thermoelectric effect now includes the Mott-Jones index (x) which is normally treated at the graduate level but has been introduced here through a semiquantitative discussion to explain the true sign of the Seebeck coefficient in metals (one of the most difficult graduate topics in quantum mechanics of metals). Overall, there are over some 300 individual changes to improve the textbook.







Electronic and Electrical Engineering


Book Description

A third edition of this popular text which provides a foundation in electronic and electrical engineering for HND and undergraduate students. The book offers exceptional breadth of coverage without sacrificing depth. It uses a wealth of practical examples to illustrate the theory, and makes no excessive demands on the reader's mathematical skills. Ideal as a teaching tool or for self-study.




Electronic Materials and Devices


Book Description

This book provides the knowledge and understanding necessary to comprehend the operation of individual electronic devices that are found in modern micro-electronics. As a textbook, it is aimed at the third-year undergraduate curriculum in electrical engineering, in which the physical electronic properties are used to develop an introductory understanding to the semiconductor devices used in modern micro-electronics. The emphasis of the book is on providing detailed physical insight into the microscopic mechanisms that form the cornerstone for these technologies. Mathematical treatments are therefore kept to the minimum level necessary to achieve suitable rigor. * Covers crystalline structure * Thorough introduction to the key principles of quantum mechanics * Semiconductor statistics, impurities, and controlled doping * Detailed analysis of the operation of semiconductor devices, including p-n junctions, field-effect transistors, metal-semiconductor junctions and bipolar junction transistors * Discussion of optoelectronic devices such as light-emitting diodes (LEDs) and lasers * Chapters on the device applications of dielectrics, magnetic materials, and superconductors




Electrical and Electronic Principles and Technology


Book Description

This practical resource introduces electrical and electronic principles and technology covering theory through detailed examples, enabling students to develop a sound understanding of the knowledge required by technicians in fields such as electrical engineering, electronics and telecommunications. No previous background in engineering is assumed, making this an ideal text for vocational courses at Levels 2 and 3, foundation degrees and introductory courses for undergraduates.