Probabilistic Conditional Independence Structures


Book Description

Probabilistic Conditional Independence Structures provides the mathematical description of probabilistic conditional independence structures; the author uses non-graphical methods of their description, and takes an algebraic approach. The monograph presents the methods of structural imsets and supermodular functions, and deals with independence implication and equivalence of structural imsets. Motivation, mathematical foundations and areas of application are included, and a rough overview of graphical methods is also given. In particular, the author has been careful to use suitable terminology, and presents the work so that it will be understood by both statisticians, and by researchers in artificial intelligence. The necessary elementary mathematical notions are recalled in an appendix.




Tychomancy


Book Description

Tychomancy—meaning “the divination of chances”—presents a set of rules for inferring the physical probabilities of outcomes from the causal or dynamic properties of the systems that produce them. Probabilities revealed by the rules are wide-ranging: they include the probability of getting a 5 on a die roll, the probability distributions found in statistical physics, and the probabilities that underlie many prima facie judgments about fitness in evolutionary biology. Michael Strevens makes three claims about the rules. First, they are reliable. Second, they are known, though not fully consciously, to all human beings: they constitute a key part of the physical intuition that allows us to navigate around the world safely in the absence of formal scientific knowledge. Third, they have played a crucial but unrecognized role in several major scientific innovations. A large part of Tychomancy is devoted to this historical role for probability inference rules. Strevens first analyzes James Clerk Maxwell’s extraordinary, apparently a priori, deduction of the molecular velocity distribution in gases, which launched statistical physics. Maxwell did not derive his distribution from logic alone, Strevens proposes, but rather from probabilistic knowledge common to all human beings, even infants as young as six months old. Strevens then turns to Darwin’s theory of natural selection, the statistics of measurement, and the creation of models of complex systems, contending in each case that these elements of science could not have emerged when or how they did without the ability to “eyeball” the values of physical probabilities.




Bayesian Networks


Book Description

Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R




Probabilistic Graphical Models


Book Description

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.




Information Processing and Management of Uncertainty in Knowledge-Based Systems


Book Description

The International Conference on Information Processing and Management of - certainty in Knowledge-Based Systems, IPMU, is organized every two years with the aim of bringing together scientists working on methods for the management of uncertainty and aggregation of information in intelligent systems. Since 1986, this conference has been providing a forum for the exchange of ideas between th theoreticians and practitioners working in these areas and related ?elds. The 13 IPMU conference took place in Dortmund, Germany, June 28–July 2, 2010. This volume contains 79 papers selected through a rigorous reviewing process. The contributions re?ect the richness of research on topics within the scope of the conference and represent several important developments, speci?cally focused on theoretical foundations and methods for information processing and management of uncertainty in knowledge-based systems. We were delighted that Melanie Mitchell (Portland State University, USA), Nihkil R. Pal (Indian Statistical Institute), Bernhard Sch ̈ olkopf (Max Planck I- titute for Biological Cybernetics, Tubing ̈ en, Germany) and Wolfgang Wahlster (German Research Center for Arti?cial Intelligence, Saarbruc ̈ ken) accepted our invitations to present keynote lectures. Jim Bezdek received the Kamp ́ede F ́ eriet Award, granted every two years on the occasion of the IPMU conference, in view of his eminent research contributions to the handling of uncertainty in clustering, data analysis and pattern recognition.




Algebraic Methods in Statistics and Probability II


Book Description

A decade after the publication of Contemporary Mathematics Vol. 287, the present volume demonstrates the consolidation of important areas, such as algebraic statistics, computational commutative algebra, and deeper aspects of graphical models. --







Statistical and Inductive Inference by Minimum Message Length


Book Description

The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.




Handbook of Graphical Models


Book Description

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.




The Handbook of Rationality


Book Description

The first reference on rationality that integrates accounts from psychology and philosophy, covering descriptive and normative theories from both disciplines. Both analytic philosophy and cognitive psychology have made dramatic advances in understanding rationality, but there has been little interaction between the disciplines. This volume offers the first integrated overview of the state of the art in the psychology and philosophy of rationality. Written by leading experts from both disciplines, The Handbook of Rationality covers the main normative and descriptive theories of rationality—how people ought to think, how they actually think, and why we often deviate from what we can call rational. It also offers insights from other fields such as artificial intelligence, economics, the social sciences, and cognitive neuroscience. The Handbook proposes a novel classification system for researchers in human rationality, and it creates new connections between rationality research in philosophy, psychology, and other disciplines. Following the basic distinction between theoretical and practical rationality, the book first considers the theoretical side, including normative and descriptive theories of logical, probabilistic, causal, and defeasible reasoning. It then turns to the practical side, discussing topics such as decision making, bounded rationality, game theory, deontic and legal reasoning, and the relation between rationality and morality. Finally, it covers topics that arise in both theoretical and practical rationality, including visual and spatial thinking, scientific rationality, how children learn to reason rationally, and the connection between intelligence and rationality.




Recent Books