Book Description
The purpose of this book is to give a comprehensive introduction to the study of non-linear operator theory in probabilistic metric spaces. This book is introduced as a survey of the latest and new results on the following topics: Basic theory of probabilistic metric spaces; Fixed point theorems for single-valued and multi-valued mappings in probabilistic metric spaces; Ekeland's variational principle and Caristi's fixed point theorem in probabilistic metric spaces; Coincidence point theorems, minimisation and fixed degree theorems in probabilistic metric spaces; Probabilistic contractors, accretive mappings and topological degree in probabilistic normed spaces; Nonlinear semigroups and differential equations in probabilistic metric spaces; KKM theorems, minimax theorems and variational inequalities.