Probabilistic performance-based seismic design


Book Description

In the last ten to fifteen years a vast amount of research has been undertaken to improve on earlier methods for analysing the seismic reliability of structures. These efforts focused on identifying aspects of prominent relevance and disregarding the inessential ones, with the goal of producing methods that are both more efficient and easier to use in practice. Today this goal can be said to be substantially achieved. During these years scientific activity covered all of the many aspects involved in such a multi-disciplinary problem, ranging from seismology, to geotechnics, to structural analysis and economy, all of them to be consistently organised into a probabilistic framework. As the output of this research was dispersed into a multitude of technical papers, fib Commission 7 thought it worthwhile to select the essential aspects of this large body of knowledge and to present them into a coherent and accessible document for structural engineers. To this end a task group of specialists was formed, whose qualifications come from their personal involvement in the above-mentioned developments throughout this period of time. From its inception the group decided that the bulletin should have had a distinct educational character and provide a clear overview of the methods available. The outcome is a compact volume that starts by introducing the concepts and definitions of performance-based engineering, continues with two chapters on assessment and design, respectively, presenting the methods in detail accompanied by illustrative examples, and concludes with an appendix with sample programming excerpts for their implementation. It is believed that at present fib Bulletin 68 represents a unique compendium on probabilistic performance-based seismic design.




Design of Reinforced Concrete Buildings for Seismic Performance


Book Description

The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.




Guidelines for Probabilistic Performance-Based Seismic Design and Assessment of Slope Engineering


Book Description

This book provides a new design and evaluation framework based on slope Stochastic Dynamics theory to probabilistic seismic performance for slope engineering. For the seismic dynamic stability safety of slope, it shifts from deterministic seismic dynamic analysis to quantitative analysis based on nonlinear stochastic dynamics, that is, from qualitative to the description of stochasticity of earthquake excitation that meet the needs in related design specification and establish a performance standard. In the nonlinear dynamic time history analysis of slope subjected to seismic ground motion, the term “randomness” is used to express the uncertainty in the intensity and frequency of earthquake excitation for slope engineering dynamic seismic performance. It mainly includes seismic design fortification standard, corresponding ground motion excitation, performance index threshold, and slope deterministic nonlinear seismic dynamic response. Even more than that, the seismic dynamic large deformation approaches of the whole process and comprehensive analysis for flow analysis after slope instability failure. Eventually, the probabilistic seismic dynamic performance of the slope engineering will be characterized by nonlinear dynamic reliability.




Performance-Based Seismic Design of Concrete Structures and Infrastructures


Book Description

Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.




Performance Based Seismic Design for Tall Buildings


Book Description

Performance-Based Seismic Design (PBSD) is a structural design methodology that has become more common in urban centers around the world, particularly for the design of high-rise buildings. The primary benefit of PBSD is that it substantiates exceptions to prescribed code requirements, such as height limits applied to specific structural systems, and allows project teams to demonstrate higher performance levels for structures during a seismic event.However, the methodology also involves significantly more effort in the analysis and design stages, with verification of building performance required at multiple seismic demand levels using Nonlinear Response History Analysis (NRHA). The design process also requires substantial knowledge of overall building performance and analytical modeling, in order to proportion and detail structural systems to meet specific performance objectives.This CTBUH Technical Guide provides structural engineers, developers, and contractors with a general understanding of the PBSD process by presenting case studies that demonstrate the issues commonly encountered when using the methodology, along with their corresponding solutions. The guide also provides references to the latest industry guidelines, as applied in the western United States, with the goal of disseminating these methods to an international audience for the advancement and expansion of PBSD principles worldwide.




Guidelines for green concrete structures


Book Description




Performance-based Seismic Bridge Design


Book Description

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.




Performance-Based Seismic Design of Structures


Book Description

Seismic design of structures is fast turning to performance-based design (PBD) from old codal force-based design (FBD) method. The aim of the book is to expose readers to the meaning and need of PBD, the evolution of PBD to date, its various forms and applications. Various design philosophies and procedures have been described including modelling aspects and hazard considerations backed by examples. Direct displacement-based design (DDBD) and Unified PBD (UPBD) of reinforced concrete (RC) frame buildings, RC dual systems, steel frame buildings and bridge piers have also been explained. The main features of this book are as follows: • Illustrates performance-based seismic design to achieve the design target by performance objective-oriented design procedure. • Covers modern design philosophies, modelling aspects, concepts in nonlinearities and use of supplemental damping devices. • Contains a chapter on seismic safety of nonstructural components. • Describes UPBD design procedure and examples of different structural systems. • Includes application and examples with reference to SAP2000 software. This book is aimed at graduate students, researchers and professionals in civil engineering, earthquake engineering and structural design.




Earthquake Engineering


Book Description

This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res




Seismic Design Methods for Steel Building Structures


Book Description

The book, after two introductory chapters on seismic design principles and structural seismic analysis methods, proceeds with the detailed description of seismic design methods for steel building structures. These methods include all the well-known methods, like force-based or displacement-based methods, plus some other methods developed by the present authors or other authors that have reached a level of maturity and are applicable to a large class of steel building structures. For every method, detailed practical examples and supporting references are provided in order to illustrate the methods and demonstrate their merits. As a unique feature, the present book describes not just one, as it is the case with existing books on seismic design of steel structures, but various seismic design methods including application examples worked in detail. The book is a valuable source of information, not only for MS and PhD students, but also for researchers and practicing engineers engaged with the design of steel building structures.