Proceedings, Annual Power Sources Conference (14th), 17-19 May 1960


Book Description

Contents: Thermal Energy Conversion Solar Energy Conversion Fuel Cell Batteries Secondary Batteries Comparison Of Energy Conversion Systems Energy Storage Devices High Rate Batteries Primary Batteries.




Solar Energy


Book Description







New Promising Electrochemical Systems for Rechargeable Batteries


Book Description

The storage of electroenergy is an essential feature of modem energy technologies. Unfortunately, no economical and technically feasible method for the solution of this severe problem is presently available. But electrochemistry is a favourite candidate from an engineering point of view. It promises the highest energy densities of all possible alternatives. If this is true, there will be a proportionality between the amount of electricity to be stored and the possible voltage, together with the mass of materials which make this storage possible. Insofar it is a matter of material science to develop adequate systems. Electricity is by far the most important secondary energy source. The present production rate, mainly in the thermal electric power stations, is in the order of 1.3 TW. Rechargeable batteries (RB) are of widespread use in practice for electroenergy storage and supply. The total capacity of primary and rechargeable batteries being exploited is the same as that of the world electric power stations. However, the important goal in the light of modem energy technology, namely the economical storage of large amounts of electricity for electric vehicles, electric route transport, load levelling, solar energy utilization, civil video & audio devices, earth and spatial communications, etc. will not be met by the presently available systems. Unless some of the new emerging electrochemical systems are established up to date, RB's based on aqueous acidic or alkali accumulators are mainly produced today.




Space Power Systems


Book Description

Space Power Systems covers systems based on the three primary sources of energy of practical value, namely, solar, nuclear, and chemical sources. This book is organized into four parts encompassing 32 chapters that also explore the requirements for space power. Part A presents the general aspects of solar cell power systems based on the work performed for US space vehicles that are to be placed in orbit. This part specifically considers a graph showing the variation of characteristic parameters of the solar cell battery storage system as a function of flight altitude. Considerable chapters in this part are devoted to the solar cell power plant for the space vehicles ADVENT, RANGER, TIROS, and TRANSIT. The remaining chapters provide a detailed analysis of the physics and engineering of solar panel and solar mirror design. Part B contains a series of papers involving the various aspects of the Atomic Energy Commission SNAP (Systems for Nuclear Auxiliary Power) program. Many details are presented for the 3 kw, liquid metal, turbo-machinery SNAP II power systems covering subjects from the basic concept through vehicle integration and safety aspects. Significant chapters in this part discuss the compact and apparently highly reliable radioisotope thermoelectric generator. Part C highlights the methods of storing and expelling high energy cryogenic fuels, which can provide from two to five times more energy per unit weight than the silver-zinc primary battery. Part D provides an interesting and useful estimation of the many requirements that are likely to become firm for space vehicles. Space vehicle engineers, designers, and researchers will find this book invaluable.







Space Power Systems Engineering


Book Description

Space Power Systems Engineering is a collection of papers dealing with the requirements for space power systems, system design, component research, the problems of application to spacecraft, and the development of a variety of space electric power systems. Some papers discuss nuclear power systems development, including nuclear reactors, nuclear dynamic systems, nuclear thermoelectric systems, and nuclear thermionic systems. Several papers tackle solar systems development, including solar collectors, solar dynamic systems, solar thermoelectric systems, chemical fuel cell systems, and chemical primary battery systems. A magnetohydrodynamic power system can be utilized for space electric generation. Power conversion or conditioning involves the interface between raw electric power and the on-board consumption of that electric power. One paper cites an application of a potential power system: particularly the engine development in a power package which includes a single-cylinder engine, generator, gas compressor, and recuperator. Some design considerations for the engine include an operation with an 0-H mixture of 2 to 1 obtained either from supercritical tankage or in the form of helium-diluted boil-off gases; a power level of 2-kw average, 3-kw maximum; and an uninterrupted life of 350 hr. The collection can prove immensely beneficial for nuclear engineers, aeronautical engineers, chemists, researchers, or technical designers whose works are related with energy conversion and space power systems.




Proceedings in Print


Book Description