Selected Papers from the 5th International Electronic Conference on Sensors and Applications


Book Description

This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications.




Proceedings of 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing


Book Description

This book gathers the proceedings of the 5th International Conference on the Industry 4.0 Model for Advanced Manufacturing (AMP 2020), held in Belgrade, Serbia, on 1–4 June 2020. The event marks the latest in a series of high-level conferences that bring together experts from academia and industry to exchange knowledge, ideas, experiences, research findings, and information in the field of manufacturing. The book addresses a wide range of topics, including: design of smart and intelligent products, developments in CAD/CAM technologies, rapid prototyping and reverse engineering, multistage manufacturing processes, manufacturing automation in the Industry 4.0 model, cloud-based products, and cyber-physical and reconfigurable manufacturing systems. By providing updates on key issues and highlighting recent advances in manufacturing engineering and technologies, the book supports the transfer of vital knowledge to the next generation of academics and practitioners. Further, it will appeal to anyone working or conducting research in this rapidly evolving field.




Development Methodologies for Big Data Analytics Systems


Book Description

This book presents research in big data analytics (BDA) for business of all sizes. The authors analyze problems presented in the application of BDA in some businesses through the study of development methodologies based on the three approaches – 1) plan-driven, 2) agile and 3) hybrid lightweight. The authors first describe BDA systems and how they emerged with the convergence of Statistics, Computer Science, and Business Intelligent Analytics with the practical aim to provide concepts, models, methods and tools required for exploiting the wide variety, volume, and velocity of available business internal and external data - i.e. Big Data – and provide decision-making value to decision-makers. The book presents high-quality conceptual and empirical research-oriented chapters on plan-driven, agile, and hybrid lightweight development methodologies and relevant supporting topics for BDA systems suitable to be used for large-, medium-, and small-sized business organizations.




Handbook of Big Data Technologies


Book Description

This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.







Innovation Through Information Systems


Book Description

This book presents the current state of research in information systems and digital transformation. Due to the global trend of digitalization and the impact of the Covid 19 pandemic, the need for innovative, high-quality research on information systems is higher than ever. In this context, the book covers a wide range of topics, such as digital innovation, business analytics, artificial intelligence, and IT strategy, which affect companies, individuals, and societies. This volume gathers the revised and peer-reviewed papers on the topic "Management" presented at the International Conference on Information Systems, held at the University of Duisburg-Essen in 2021.




Computing the Future: Exploring the Frontier of Intelligent Technologies


Book Description

Chapters Chapter 1: Transforming Natural Language Processing and Understanding Chapter 2: Unleashing the Power of Artificial Intelligence and Machine Learning Chapter 3: Networking and the Internet of Things: Building Secure and Connected Infrastructures Chapter 4: Information Technology: Enabling Digital Transformation Chapter 5: Unraveling the Potentials of Artificial Intelligent and Machine Learning to Diagnosis and treatment of Substance Use and Co-Occurring Mental Disorders Chapter 6: Redefining Hardware for AI: From Neuromorphic Chips to Quantum Computing




Big Data 2.0 Processing Systems


Book Description

This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and big data processing scenarios such as the large-scale processing of structured data, graph data and streaming data. Thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Lastly, Chapter 6 shares conclusions and an outlook on future research challenges. Overall, the book offers a valuable reference guide for students, researchers and professionals in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject.




Proceedings of the International Conference on Big Data, IoT, and Machine Learning


Book Description

This book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Big Data, IoT and Machine Learning (BIM 2021), held in Cox’s Bazar, Bangladesh, during 23–25 September 2021. The book covers research papers in the field of big data, IoT and machine learning. The book will be helpful for active researchers and practitioners in the field.