Energy, Waste and the Environment


Book Description

This book provides incentives for further development of sustainable fuel cycles through a novel and interdisciplinary approach to an Earth science-related topic. The main focus is on geochemical concepts in immobilizing, isolating or neutralizing waste derived from energy production and consumption. The book also addresses the issue of using some types of energy-derived waste as alternative raw materials. Moreover, it highlights research on how certain wastes can be used for energy production, an increasingly important aspect of modern integrated waste management strategies. The main objectives are to: (a) identify the most serious environmental problems related to various types of power generation and associated waste accumulation; (b) present strategies, based on natural analogue materials, for the immobilization of toxic and radioactive waste components through mineralogical barriers; (c) discuss modern procedures for reuse of waste or certain waste components; and (d) review the importance of geochemical modelling in describing and predicting the interaction between waste and the environment.




Environmental Consequences of the Chernobyl Accident and Their Remediation


Book Description

The explosion on 26 April 1986 at the Chernobyl nuclear power plant and the consequent reactor fire resulted in an unprecedented release of radioactive material from a nuclear reactor and adverse consequences for the public and the environment. Although the accident occurred nearly two decades ago, controversy still surrounds the real impact of the disaster. Therefore the IAEA, in cooperation with other UN bodies, the World Bank, as well as the competent authorities of Belarus, the Russian Federation and Ukraine, established the Chernobyl Forum in 2003. The mission of the Forum was to generate 'authoritative consensual statements' on the environmental consequences and health effects attributable to radiation exposure arising from the accident as well as to provide advice on environmental remediation and special health care programmes, and to suggest areas in which further research is required. This report presents the findings and recommendations of the Chernobyl Forum concerning the environmental effects of the Chernobyl accident.







Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures


Book Description

This proceedings volume for the 4th international conference CIGOS 2017 (Congrès International de Géotechnique - Ouvrages - Structures) presents novel technologies, solutions and research advances, making it an excellent guide in civil engineering for researchers, students, and professional engineers alike. Since 2010, CIGOS has become a vital forum for international scientific exchange on civil engineering. It aims to promote beneficial economic partnerships and technology exchanges between enterprises, worldwide institutions and universities. Following the success of the last three CIGOS conferences (2010, 2013 and 2015), the 4th conference was held at Ho Chi Minh City University of Technology, Ho Chi Minh City (Saigon), Vietnam on 26 to 27 October 2017. The main scientific themes of CIGOS 2017 were focused on ‘New Challenges in Civil Engineering’.




Index of Conference Proceedings


Book Description




Chemical Separation Technologies and Related Methods of Nuclear Waste Management


Book Description

Separation technologies are of crucial importance to the goal of significantly reducing the volume of high-level nuclear waste, thereby reducing the long-term health risks to mankind. International co-operation, including the sharing of concepts and methods, as well as technology transfer, is essential in accelerating research and development in the field. The writers of this book are all internationally recognised experts in the field of separation technology, well qualified to assess and criticize the current state of separation research as well as to identify future opportunities for the application of separation technologies to the solution of nuclear waste management problems. The major emphases in the book are research opportunities in the utilization of innovative and potentially more efficient and cost effective processes for waste processing/treatment, actinide speciation/separation methods, technological processing, and environmental restoration.




Nuclear Decommissioning


Book Description

Once a nuclear installation has reached the end of its safe and economical operational lifetime, the need for its decommissioning arises. Different strategies can be employed for nuclear decommissioning, based on the evaluation of particular hazards and their attendant risks, as well as on the analysis of costs of clean-up and waste management. This allows for decommissioning either soon after permanent shutdown, or perhaps a long time later, the latter course allowing for radioactivity levels to drop in any activated or contaminated components. It is crucial for clear processes and best practices to be applied in decommissioning such installations and sites, particular where any significant health and environmental risks exist.This book critically reviews the nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities. Part one focuses on the fundamental planning issues in starting a nuclear decommissioning process, from principles and safety regulations, to financing and project management. Part two covers the execution phase of nuclear decommissioning projects, detailing processes and technologies such as dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse. Finally, part three details international experience in the decommissioning of nuclear applications, including the main nuclear reactor types and nuclear fuel cycle facilities, as well as small nuclear facilities and legacy nuclear waste sites. - Critically reviews nuclear decommissioning processes and technologies applicable to nuclear power plants and other civilian nuclear facilities - Discusses the fundamental planning issues in starting a nuclear decommissioning process - Considers the execution phase of nuclear decommissioning projects, including dismantling, decontamination, and radioactive waste management, as well as environmental remediation, site clearance and reuse







Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant


Book Description

The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.