The Cold Spray Materials Deposition Process


Book Description

The cold spray process produces dense, low oxide coatings which can be used in such diverse applications as corrosion control and metals repair. It has emerged as an important alternative to thermal spray coating techniques in certain areas. This pioneering book reviews both the fundamentals of the process and how it can best be applied in practice. The first part of the book discusses the development of the process together with its advantages and disadvantages in comparison with thermal spray coating techniques. Part two reviews key process parameters such as powders, nozzle design, particle temperature and velocity, and particle/substrate interaction. It also describes portable and stationary cold spray systems. The final part of the book discusses how the cold spray process can be applied in such areas as improved wear, corrosion protection, electromagnetic interference shielding and repair of damaged components. The cold spray materials deposition process is a standard reference on this important process and its industrial applications. Examines the fundamentals of the cold spraying process Assesses how the technique can best be applied in practice Describes portable and stationary cold spray systems




Modern Cold Spray


Book Description

This book focuses on the current state of the art of the novel cold spray process. Cold spray is a solid state metal consolidation process, which allows engineers to tailor surface and shape properties by optimizing process parameters, powder characteristics and substrate conditions for a wide variety of applications that are difficult or impossible by other techniques. Readers will benefit from this book's coverage of the commercial evolution of cold spray since the 1980's and will gain a practical understanding of what the technology has to offer.




Cold Spray Technology


Book Description

The topic of this book is Cold Spray technology. Cold Spray is a process of applying coatings by exposing a metallic or dielectric substrate to a high velocity (300 to 1200 m/s) jet of small (1 to 50 μm) particles accelerated by a supersonic jet of compressed gas. This process is based on the selection of the combination of particle temperature, velocity, and size that allows spraying at the lowest temperature possible. In the Cold Spray process, powder particles are accelerated by the supersonic gas jet at a temperature that is always lower than the melting point of the material, resulting in coating formation from particles in the solid state. As a consequence, the deleterious effects of high-temperature oxidation, evaporation, melting, crystallization, residual stresses, gas release, and other common problems for traditional thermal spray methods are minimized or eliminated. This book is the first of its kind on the Cold Spray process. Cold Spray Technology covers a wide spectrum of various aspects of the Cold Spray technology, including gas-dynamics, physics of interaction of high-speed solid particles with a substrate as well as equipment, technologies, and applications. Cold Spray Technology includes the results of more than 20 years of original studies (1984-2005) conducted at the Institute of Theoretical and Applied Mechanics of the Siberian Division of the Russian Academy of Science, as well as the results of studies conducted at most of the research centres around the world. The authors' goal is threefold. The first goal is to explain basic principles and advantages of the Cold Spray process. The second goal is, to give practical information on technologies and equipment. The third goal is to present the current state of research and development in this field over the world. The book provides coverage and data that will be of interest for users of Cold Spray technology as well as for other coating experts. At the present time the Cold Spray method is recognized by world leading scientists and specialists. A wide spectrum of research is being conducted at many research centres and companies in many countries. New approach to spray coatings Results are exceptionally pure coatings Low spray temperature without degradation of powder and substrate materials High productivity, high deposition efficiency High operational safety because of absence of high temperature gas jets, radiation and explosive gases Excellent thermal and electrical conductivity Wide spectrum of applications because of important advantages of the process




Process-Spray


Book Description

This book describes the latest research on producing functional particles using spray processes. The authors detail micro level elementary processes and phase boundaries, process analysis scaling and modeling, and macro level process functions and particle properties. They include numerical simulations and particulars of experiments for deriving process conditions for particle production.




Thermal Spray Fundamentals


Book Description

This book provides readers with the fundamentals necessary for understanding thermal spray technology. Coverage includes in-depth discussions of various thermal spray processes, feedstock materials, particle-jet interactions, and associated yet very critical topics: diagnostics, current and emerging applications, surface science, and pre and post-treatment. This book will serve as an invaluable resource as a textbook for graduate courses in the field and as an exhaustive reference for professionals involved in thermal spray technology.




Modeling Engine Spray and Combustion Processes


Book Description

The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.




Modeling Engine Spray and Combustion Processes


Book Description

The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.




Handbook of Thermal Spray Technology


Book Description

This reference covers principles, processes, types of coatings, applications, performance, and testing and analysis of thermal spray technology. It will serve as an introduction and guide for those new to thermal spray, and as a reference for specifiers and users of thermal spray coatings and thermal spray experts. Coverage encompasses basics of th




Thermal Spray 2004


Book Description