Products of Random Variables


Book Description

Products of Random Variables explores the theory of products of random variables through from distributions and limit theorems, to characterizations, to applications in physics, order statistics, and number theory. It uses entirely probabilistic arguments in actualizing the potential of the asymptotic theory of products of independent random variab




The Algebra of Random Variables


Book Description

Differentiation and integration in the complex plane; The distribution of sums and differences of Random variables; The distribution of products and quotients of Random variables; The distribution of algebraic functions of independent Random variables; The distribution of algebraic functions of independent H-function variables; Analytical model for evaluation of the H-function inversion integral; Approximating the distribution of an algebraic function of independent random variables; Distribution problems in statistics.







Sums of Independent Random Variables


Book Description

The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity




Advances in Statistics - Theory and Applications


Book Description

This edited collection brings together internationally recognized experts in a range of areas of statistical science to honor the contributions of the distinguished statistician, Barry C. Arnold. A pioneering scholar and professor of statistics at the University of California, Riverside, Dr. Arnold has made exceptional advancements in different areas of probability, statistics, and biostatistics, especially in the areas of distribution theory, order statistics, and statistical inference. As a tribute to his work, this book presents novel developments in the field, as well as practical applications and potential future directions in research and industry. It will be of interest to graduate students and researchers in probability, statistics, and biostatistics, as well as practitioners and technicians in the social sciences, economics, engineering, and medical sciences.




Lectures on the Coupling Method


Book Description

Practical and easy-to-use reference progresses from simple to advanced topics, covering, among other topics, renewal theory, Markov chains, Poisson approximation, ergodicity, and Strassen's theorem. 1992 edition.




Measures, Integrals and Martingales


Book Description

This book, first published in 2005, introduces measure and integration theory as it is needed in many parts of analysis and probability.




Introduction to Probability


Book Description

This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.




Free Random Variables


Book Description

This book presents the first comprehensive introduction to free probability theory, a highly noncommutative probability theory with independence based on free products instead of tensor products. Basic examples of this kind of theory are provided by convolution operators on free groups and by the asymptotic behavior of large Gaussian random matrices. The probabilistic approach to free products has led to a recent surge of new results on the von Neumann algebras of free groups. The book is ideally suited as a textbook for an advanced graduate course and could also provide material for a seminar. In addition to researchers and graduate students in mathematics, this book will be of interest to physicists and others who use random matrices.




Computational Probability


Book Description

This title organizes computational probability methods into a systematic treatment. The book examines two categories of problems. "Algorithms for Continuous Random Variables" covers data structures and algorithms, transformations of random variables, and products of independent random variables. "Algorithms for Discrete Random Variables" discusses data structures and algorithms, sums of independent random variables, and order statistics.




Recent Books