Computer Aids for VLSI Design


Book Description

This textbook, originally published in 1987, broadly examines the software required to design electronic circuitry, including integrated circuits. Topics include synthesis and analysis tools, graphics and user interface, memory representation, and more. The book also describes a real system called "Electric."




Progress in Computing, Analytics and Networking


Book Description

The book focuses to foster new and original research ideas and results in three broad areas: computing, analytics, and networking with its prospective applications in the various interdisciplinary domains of engineering. This is an exciting and emerging interdisciplinary area in which a wide range of theory and methodologies are being investigated and developed to tackle complex and challenging real world problems. It also provides insights into the International Conference on Computing Analytics and Networking (ICCAN 2017) which is a premier international open forum for scientists, researchers and technocrats in academia as well as in industries from different parts of the world to present, interact, and exchange the state of art of concepts, prototypes, innovative research ideas in several diversified fields. The book includes invited keynote papers and paper presentations from both academia and industry to initiate and ignite our young minds in the meadow of momentous research and thereby enrich their existing knowledge. The book aims at postgraduate students and researchers working in the discipline of Computer Science & Engineering. It will be also useful for the researchers working in the domain of electronics as it contains some hardware technologies and forthcoming communication technologies.




Machine Learning in VLSI Computer-Aided Design


Book Description

This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center




Specification and Verification of Systolic Arrays


Book Description

Circuits and architectures have become more complex in terms of structure, interconnection topology, and data flow. Design correctness has become increasingly significant, as errors in design may result in strenuous debugging, or even in the repetition of a costly manufacturing process. Although circuit simulation has been used traditionally and widely as the technique for checking hardware and architectural designs, it does not guarantee the conformity of designs to specifications. Formal methods therefore become vital in guaranteeing the correctness of designs and have thus received a significant amount of attention in the CAD industry today.This book presents a formal method for specifying and verifying the correctness of systolic array designs. Such architectures are commonly found in the form of accelerators for digital signal, image, and video processing. These arrays can be quite complicated in topology and data flow. In the book, a formalism called STA is defined for these kinds of dynamic environments, with a survey of related techniques. A framework for specification and verification is established. Formal verification techniques to check the correctness of the systolic networks with respect to the algorithmic level specifications are explained. The book also presents a Prolog-based formal design verifier (named VSTA), developed to automate the verification process, as using a general purpose theorem prover is usually extremely time-consuming. Several application examples are included in the book to illustrate how formal techniques and the verifier can be used to automate proofs.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.







Technology Computer Aided Design


Book Description

Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and TCAD software. Providing background concepts involved in the TCAD simulation of MOSFET devices, it presents concepts in a simplified manner, frequently using comparisons to everyday-life experiences. The book then explains concepts in depth, with required mathematics and program code. This book also details the classical semiconductor physics for understanding the principle of operations for VLSI MOS transistors, illustrates recent developments in the area of MOSFET and other electronic devices, and analyzes the evolution of the role of modeling and simulation of MOSFET. It also provides exposure to the two most commercially popular TCAD simulation tools Silvaco and Sentaurus. • Emphasizes the need for TCAD simulation to be included within VLSI design flow for nano-scale integrated circuits • Introduces the advantages of TCAD simulations for device and process technology characterization • Presents the fundamental physics and mathematics incorporated in the TCAD tools • Includes popular commercial TCAD simulation tools (Silvaco and Sentaurus) • Provides characterization of performances of VLSI MOSFETs through TCAD tools • Offers familiarization to compact modeling for VLSI circuit simulation R&D cost and time for electronic product development is drastically reduced by taking advantage of TCAD tools, making it indispensable for modern VLSI device technologies. They provide a means to characterize the MOS transistors and improve the VLSI circuit simulation procedure. The comprehensive information and systematic approach to design, characterization, fabrication, and computation of VLSI MOS transistor through TCAD tools presented in this book provides a thorough foundation for the development of models that simplify the design verification process and make it cost effective.