Progress In Nonequilibrium Green's Functions Ii - Proceedings Of The Conference


Book Description

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many areas of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which is equally applied to all these areas is given by quantum field theory. This book provides an overview of the basic ideas and concepts of the method of nonequilibrium Green's functions, written by the leading experts and presented in a way accessible to non-specialists and graduate students. It is complemented by invited review papers on modern applications of the method to a variety of topics, such as optics and quantum transport in semiconductors; superconductivity; strong field effects, QCD, and state-of-the-art computational concepts — from Green's functions to quantum Monte Carlo and time-dependent density functional theory.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)




Progress in Nonequilibrium Green's Functions


Book Description

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, J”rn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.




Proceedings Of The Julian Schwinger Centennial Conference


Book Description

The Julian Schwinger Centennial Conference of 2018 assembled many of Schwinger's students, colleagues, and friends to celebrate this towering figure of twentieth century physics one hundred years after his birth. This proceedings volume collects talks delivered on this occasion. They cover a wide range of topics, all related to Schwinger's rich scientific legacy — supplemented by personal recollections about Julian Schwinger, the physicist, the teacher, and the gentleman.Also included are an essay of 1985, co-authored by Schwinger but not published previously, as well as the transcripts of speeches by distinguished colleagues at the 1978 gathering when Schwinger's sixtieth birthday was celebrated.




Quantum Kinetic Theory


Book Description

This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.




Recent Progress In Many-body Theories - Proceedings Of The 11th International Conference


Book Description

Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Its most powerful techniques are truly universal. They are constantly expanding to find new fields of application, while advances continue to be made in the more traditional areas. To commemorate the impending 80th birthdays of its two co-inventors, Firtz Coester and Hermann Kümmel, one such technique, namely the coupled cluster method, was especially highlighted at this meeting, the eleventh in the series of International Conferences on Recent Progress in Many-Body Theories. The history of the coupled cluster method as told here mirrors in many ways both the development of the entire discipline of microscopic quantum many-body theory and the history of the series of conferences. The series itself is universally recognised as being the premier series of meetings in this subject area. Its proceedings have always summarised the current state of the art through the lectures of its leading practitioners. The present volume is no exception. No serious researcher in quantum many-body theory or in any field which uses it can afford to be without this volume.




Progress In Statistical Physics - Proceedings Of The International Conference On Statistical Physics In Memory Of Prof Boon


Book Description

The International Conference on the Progress in Statistical Physics was held in commemoration of Professor Choh, who is renowned for his seminal contribution to the kinetic theory of non-dilute fluids, well known as the Choh-Uhlenbeck equation. During the conference, some of the remarkable progress in the field of statistical physics were reviewed and future directions of statistical physics was discussed.




Quantum Statistics of Nonideal Plasmas


Book Description

During the last decade impressive development and signi?cant advance of the physics of nonideal plasmas in astrophysics and in laboratories can be observed, creating new possibilities for experimental research. The enormous progress in laser technology, but also ion beam techniques, has opened new ways for the production and diagnosis of plasmas under extreme conditions, relevant for astrophysics and inertially con?ned fusion, and for the study of laser-matter interaction. In shock wave experiments, the equation of state and further properties of highly compressed plasmas can be investigated. This experimental progress has stimulated the further development of the statistical theory of nonideal plasmas. Many new results for thermodynamic and transport properties, for ionization kinetics, dielectric behavior, for the stopping power, laser-matter interaction, and relaxation processes have been achieved in the last decade. In addition to the powerful methods of quantum statistics and the theory of liquids, numerical simulations like path integral Monte Carlo methods and molecular dynamic simulations have been applied.




Handbook of Optoelectronic Device Modeling and Simulation


Book Description

• Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.




Recent Progress in Many-body Theories


Book Description

Quantum many-body theory as a discipline in its own right dates largely from the 1950's. It has developed since then to its current position as one of the cornerstones of modern theoretical physics. The field remains vibrant and active, vigorous and exciting. Its most powerful techniques are truly universal. They are constantly expanding to find new fields of application, while advances continue to be made in the more traditional areas. To commemorate the impending 80th birthdays of its two co-inventors, Firtz Coester and Hermann Kummel, one such technique, namely the coupled cluster method, was especially highlighted at this meeting, the eleventh in the series of International Conferences on Recent Progress in Many-Body Theories. The history of the coupled cluster method as told here mirrors in many ways both the development of the entire discipline of microscopic quantum many-body theory and the history of the series of conferences. The series itself is universally recognised as being the premier series of meetings in this subject area. Its proceedings have always summarised the current state of the art through the lectures of its leading practitioners. The present volume is no exception. No serious researcher in quantum many-body theory or in any field which uses it can afford to be without this volume.




Mathematical Reviews


Book Description