Protein Cages


Book Description

This volume emphasizes new techniques to help understand protein cages and to apply them to a variety of technologies, highlighting the expertise of researchers based on three continents. Protein cages are currently inspiring diverse scientific disciplines and are therefore at the crossroads of extremely widely-scoped research, which is reflected in the detailed chapters of Protein Cages: Methods and Protocols. From nanomaterials studies and iron particles to computational strategies and Atomic Force Microscopy, the chapters herein collectively provide an introduction to the rich world of protein cage research and specific techniques to understand and exploit this fascinating class of proteins. Written in the highly successful Methods in Molecular Biology series format, chapters begin with an introduction to their respective topics, lists of the necessary materials, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and cutting-edge, Protein Cages: Methods and Protocols will help to inspire and further propel the current multi-disciplinary enthusiasm in studying and discovering new applications for protein cages.




Coordination Chemistry in Protein Cages


Book Description

Sets the stage for the design and application of new protein cages Featuring contributions from a team of international experts in the coordination chemistry of biological systems, this book enables readers to understand and take advantage of the fascinating internal molecular environment of protein cages. With the aid of modern organic and polymer techniques, the authors explain step by step how to design and construct a variety of protein cages. Moreover, the authors describe current applications of protein cages, setting the foundation for the development of new applications in biology, nanotechnology, synthetic chemistry, and other disciplines. Based on a thorough review of the literature as well as the authors' own laboratory experience, Coordination Chemistry in Protein Cages Sets forth the principles of coordination reactions in natural protein cages Details the fundamental design of coordination sites of small artificial metalloproteins as the basis for protein cage design Describes the supramolecular design and assembly of protein cages for or by metal coordination Examines the latest applications of protein cages in biology and nanotechnology Describes the principles of coordination chemistry that govern self-assembly of synthetic cage-like molecules Chapters are filled with detailed figures to help readers understand the complex structure, design, and application of protein cages. Extensive references at the end of each chapter serve as a gateway to important original research studies and reviews in the field. With its detailed review of basic principles, design, and applications, Coordination Chemistry in Protein Cages is recommended for investigators working in biological inorganic chemistry, biological organic chemistry, and nanoscience.




Protein Cages


Book Description

This volume provides the latest methods for synthesis, structural analysis, and elucidation of the mechanism. Chapters guide readers through methods on protein cages for nanotechnology, analyze designed protein cages, determine the structures, and even perform theoretical analysis. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Protein Cages: Methods and Protocols aims to be a useful and practical guide to new researchers and experts looking to expand their knowledge.







Amino Acids, Peptides and Proteins


Book Description

Amino Acids, Peptides and Proteins is a broad ranging title comprising a selection of comprehensive and critical reviews of significant developments at the biology and chemistry interface. Compiled by leading researchers in their subject, this volume incorporates current trends and emerging areas reflecting the state-of-the-art research in this field. Appealing broadly to researchers in academia and industry, it will be of great benefit to any researcher wanting a succinct reference in this field and looking at the future.




Proteins in Solution and at Interfaces


Book Description

Explores new applications emerging from our latest understanding of proteins in solution and at interfaces Proteins in solution and at interfaces increasingly serve as the starting point for exciting new applications, from biomimetic materials to nanoparticle patterning. This book surveys the state of the science in the field, offering investigators a current understanding of the characteristics of proteins in solution and at interfaces as well as the techniques used to study these characteristics. Moreover, the authors explore many of the new and emerging applications that have resulted from the most recent studies. Topics include protein and protein aggregate structure; computational and experimental techniques to study protein structure, aggregation, and adsorption; proteins in non-standard conditions; and applications in biotechnology. Proteins in Solution and at Interfaces is divided into two parts: Part One introduces concepts as well as theoretical and experimental techniques that are used to study protein systems, including X-ray crystallography, nuclear magnetic resonance, small angle scattering, and spectroscopic methods Part Two examines current and emerging applications, including nanomaterials, natural fibrous proteins, and biomolecular thermodynamics The book's twenty-three chapters have been contributed by leading experts in the field. These contributions are based on a thorough review of the latest peer-reviewed findings as well as the authors' own research experience. Chapters begin with a discussion of core concepts and then gradually build in complexity, concluding with a forecast of future developments. Readers will not only gain a current understanding of proteins in solution and at interfaces, but also will discover how theoretical and technical developments in the field can be translated into new applications in material design, genetic engineering, personalized medicine, drug delivery, biosensors, and biotechnology.




Antifreeze Proteins Volume 2


Book Description

This second volume, written in four parts, offers the reader a thorough review on molecular, structural and applied aspects of antifreeze proteins. The first part treats the structure-function relationship and the physicochemical properties of antifreeze proteins; the second part provides insight into molecular mechanisms affected by antifreeze proteins; the third part presents some of the potential applications in various professional sectors and in the last part the book content is summarized and future research directions and ideas are discussed. Together with the first volume on the environment, systematic and evolution of antifreeze proteins, this book represents a unique, comprehensive work and a must-have for students and scientists in biochemistry, molecular biology, biotechnology and physical chemistry.




Amino Acids, Peptides and Proteins


Book Description

In an ever-increasing domain of activity, this annual compilation of the world's research effort provides insight into an important area of biological chemistry.




Iron-Binding Proteins—Advances in Research and Application: 2012 Edition


Book Description

Iron-Binding Proteins—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Iron-Binding Proteins. The editors have built Iron-Binding Proteins—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Iron-Binding Proteins in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Iron-Binding Proteins—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Fibrous Proteins: Structures and Mechanisms


Book Description

This book provides the readers with an up-to-date review of the design, structure and function of a representative selection of fibrous proteins in both health and disease. The importance of the α-helical coiled coil, a conformational motif based on the heptad repeat in the amino acid sequence of all α-fibrous proteins (and parts of some globular proteins) is underlined by three Chapters devoted to its design, structure, function and topology. Specific proteins covered in the text and which depend on the coiled coil for their structure and function, include the intermediate filament proteins, tropomyosin, myosin, paramyosin, fibrin and members of the spectrin superfamily. Also described are fibrous proteins based on the β-pleated sheet and collagen conformations. Recombinant structural proteins, especially of silk and collagen, are discussed in the context of developing new biomaterials with varied applications. Established researchers and postgraduate students in the fields of protein chemistry, biochemistry and structural biophysics will find Fibrous Proteins: Structures and Mechanisms to be an invaluable collection of topical reviews that describe the basic advances made in the field of fibrous proteins over the past decade. This book, written by recognized authorities in the field, provides a clear account of the current status of fibrous protein research and, in addition, establishes the basis for deciding the most appropriate directions for future activity, including the applications of protein engineering and the commercial exploitation of new biomaterials.