Protein - Water Interactions


Book Description

This book is aimed at understanding which molecular parameters control the thermodynamics, structure, and functions of the protein-water systems. Proteins are one of the most important classes of biological molecules. Water binding (hydration or biological water) plays a crucial role in determining the structure, stability, and functions of proteins. Knowledge of processes occurring upon hydration or dehydration of protein macromolecules is very important in biotechnological and pharmaceutical applications of proteins such as their use as biocatalysts, biosensors, and selective adsorbents. There are essential differences between hydration and bulk water surrounding a protein. This means that a characterisation of the hydration of protein macromolecules requires elucidating the effects of both the protein on water and vice versa. Therefore, a quantitative estimation of the protein and water contributions to the thermodynamic functions of binary protein-water systems is of considerable fundamental importance and practical interest. This book describes the basic principles of a novel methodology to investigate the protein-water interactions. This methodology is based on the analysis of the excess thermodynamic functions of mixing. The thermodynamic properties (volume V, enthalpy H, entropy S, heat capacity Cp, and Gibbs free energy G) of a real binary water-protein system can be expressed in terms of the excess functions. They are the difference between the thermodynamic function of mixing in a real system and the value corresponding to an ideal system at the same temperature, pressure and composition. For an ideal system, all excess functions are zero. Deviations of the excess functions from zero indicate the extent to which the studied binary system is non-ideal due to strong specific interactions between components (ie: hydrogen bonding and charge-charge interactions).




Intermolecular Forces


Book Description

Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, April 13-16, 1981




Water in Biological and Chemical Processes


Book Description

A unified overview of the dynamical properties of water and its unique and diverse role in biological and chemical processes.




The Hydrophobic Effect


Book Description

This almost entirely rewritten edition remains the only comprehensive, up-to-date account of the subject available today—with nearly half of all literature references made to work done since 1973. Theoretical treatment of micelle formation has been greatly improved, making it possible to predict (from first principles) the size and size distribution of micelles formed by many simple amphiphiles . . . as well as the critical concentration at which they first form. Defines four distinct modes of association between protein and detergents (or other amphiphiles), and gives a plausible explanation to show why some ionic detergents generally denature proteins while nonionic detergents often do not. Also includes entirely new chapters on serum lipoproteins and on membrane proteins.




Functionality of Proteins in Food


Book Description

The book is devoted to expanding current views on the phenomena of protein functionality in food systems. Protein functionalities in foods have been the object ofextensive research over the last thirty to forty years and significant progress has been made in understanding the mechanism and factors influencing the functionality of proteins. The functionality of proteins is one of the fastest developing fields in the studies of protein utilization in foods. Currently, a broad spectrum of data related to protein functionality in food systems has been collected, however, much more needs to be known. In this volume, the most important functional properties offood proteins are presented: Protein solubility, water holding capacity and fat binding, emulsifying, foaming, and gelling properties as affected by protein source, environmental factors (pH, temperature, ionic strength) and protein concentration; Relationships between protein conformation, physicochemical properties, and functional properties; Protein functional properties as influenced by various food processing conditions, particularly heat treatment, dehydration, freezing and storage when frozen, extraction and other processes; Effects ofprotein modification on the enhancementofprotein functionality; Utilization ofvarious proteins in improving functional properties in food systems. Those aspects of protein functionality are presented which the author believes to be interesting and most important for protein utilization in food systems. The book is recommended to students and food scientists engaged in food protein research and food industry research, and development scientists. Table ofContents Introduction 1 References 5 Chapter 1 Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1. 1 Factors Affecting Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . .







Protein-Solvent Interactions


Book Description

This work covers advances in the interactions of proteins with their solvent environment and provides fundamental physical information useful for the application of proteins in biotechnology and industrial processes. It discusses in detail structure, dynamic and thermodynamic aspects of protein hydration, as well as proteins in aqueous and organic solvents as they relate to protein function, stability and folding.




Water Relations of Foods


Book Description

Water Relations of Foods consists of proceedings of an international symposium on "Water Relations of Foods held in Glasgow, in September 1974. Organized into seven sections, the book presents the various papers delivered in the symposium. It describes the physical chemistry of water in simple systems as well as in the more complex food component systems (carbohydrates, lipids, and proteins), with emphasis on the nature of the intermolecular forces involved. It also reports the various techniques used to measure the state of water in food and in model systems made up of food components. Furthermore, the book discusses water activity and the growth of food spoilage and pathogenic organism; water relations of enzymic and non-enzymic deteriorative reactions in food; effects of freezing and thawing of water in food systems; and the significant aspects of food quality as affected by water in the system. Lastly, the modification of the state of water in foods is addressed. This publication will indeed help advance the understanding on this field of interest.




Hydration Processes in Biology


Book Description

The interaction of water at organic surfaces or interfaces is of fundamental and technological interest and importance in chemistry, physics and biology. Progress towards an in-depth, molecular interpretation of the structure and dynamics of interfacial water needs a range of novel experimental and simulation techniques. We are now reaching the stage at which we understand, at the molecular level, the mutual perturbation at a macromolecule/water interface. The aims of this book are to provide with a comprehensive background to the properties of bulk water at the microscopic level and with a substantial account of the theoretical and experimental contributions which have been done to understand the role of water in various systems from some model systems to the more complex ones such as the biological systems.




Antifreeze Proteins Volume 2


Book Description

This second volume, written in four parts, offers the reader a thorough review on molecular, structural and applied aspects of antifreeze proteins. The first part treats the structure-function relationship and the physicochemical properties of antifreeze proteins; the second part provides insight into molecular mechanisms affected by antifreeze proteins; the third part presents some of the potential applications in various professional sectors and in the last part the book content is summarized and future research directions and ideas are discussed. Together with the first volume on the environment, systematic and evolution of antifreeze proteins, this book represents a unique, comprehensive work and a must-have for students and scientists in biochemistry, molecular biology, biotechnology and physical chemistry.