Writing for Science and Engineering


Book Description

Resumen: Are you a post-graduate student in Engineering, Science or Technology who needs to know how to: Prepare abstracts, theses and journal papers Present your work orally Present a progress report to your funding body Would you like some guidance aimed specifically at your subject area? ... This is the book for you; a practical guide to all aspects of post-graduate documentation for Engineering, Science and Technology students, which will prove indispensable to readers. Writing for Science and Engineering will prove invaluable in all areas of research and writing due its clear, concise style. The practical advice contained within the pages alongside numerous examples to aid learning will make the preparation of documentation much easier for all students.










Transactions of ASME.


Book Description




Engineering in Medicine


Book Description

Engineering in Medicine: Advances and Challenges documents the historical development, cutting-edge research and future perspectives on applying engineering technology to medical and healthcare challenges. The book has 22 chapters under 5 sections: cardiovascular engineering, neuroengineering, cellular and molecular bioengineering, medical and biological imaging, and medical devices.The challenges and future perspectives of engineering in medicine are discussed, with novel methodologies that have been implemented in innovative medical device development being described.This is an ideal general resource for biomedical engineering researchers at both universities and in industry as well as for undergraduate and graduate students. Presents a broad perspective on the state-of-the-art research in applying engineering technology to medical and healthcare challenges that cover cardiovascular engineering, neuroengineering, cellular and molecular bioengineering, medical and biological imaging, and medical devices Presents the challenges and future perspectives of engineering in medicine Written by members of the University of Minnesota’s prestigious Institute of Engineering in Medicine (IEM), in collaboration with other experts around the world







The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education


Book Description

In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.