Biomass Gasification and Pyrolysis


Book Description

This book offers comprehensive coverage of the design, analysis, and operational aspects of biomass gasification, the key technology enabling the production of biofuels from all viable sources--some examples being sugar cane and switchgrass. This versatile resource not only explains the basic principles of energy conversion systems, but also provides valuable insight into the design of biomass gasifiers. The author provides many worked out design problems, step-by-step design procedures and real data on commercially operating systems. After fossil fuels, biomass is the most widely used fuel in the world. Biomass resources show a considerable potential in the long term if residues are properly handled and dedicated energy crops are grown. Includes step-by-step design procedures and case studies for Biomass GasificationProvides worked process flow diagrams for gasifier design. Covers integration with other technologies (e.g. gas turbine, engine, fuel cells)




Pyrolysis


Book Description

Pyrolysis is the chemical decomposition of organic materials by heating in the absence or controlled amount of oxygen. Pyrolysis and gasification are thermo-chemical conversion routes which recovers energy from biomass and waste fuels. Pyrolysis is heavily used in the chemical industry, for example, to produce charcoal, activated carbon, methanol and other chemicals from wood. It is an important chemical process in several cooking procedures such as baking, frying and grilling. Pyrolytic processes are involved in basic research as well as in applied fields such as the industry. This book will survey the use of the pyrolysis in these fields and will also examine current research done in the nanoscience field.




Pyrolysis - GC/MS Data Book of Synthetic Polymers


Book Description

In this data book, both conventional Py-GC/MS where thermal energy alone is used to cause fragmentation of given polymeric materials and reactive Py-GC/MS in the presence of organic alkaline for condensation polymers are compiled. Before going into detailed presentation of the data, however, acquiring a firm grip on the proper understanding about the situation of Py-GC/MS would promote better utilization of the following pyrolysis data for various polymers samples. This book incorporates recent technological advances in analytical pyrolysis methods especially useful for the characterization of 163 typical synthetic polymers. The book briefly reviews the instrumentation available in advanced analytical pyrolysis, and offers guidance to perform effectually this technique combining with gas chromatography and mass spectrometry. Main contents are comprehensive sample pyrograms, thermograms, identification tables, and representative mass spectra (MS) of pyrolyzates for synthetic polymers. This edition also highlights thermally-assisted hydrolysis and methylation technique effectively applied to 33 basic condensation polymers. - Coverage of Py-GC/MS data of conventional pyrograms and thermograms of basic 163 kinds of synthetic polymers together with MS and retention index data for pyrolyzates, enabling a quick identification - Additional coverage of the pyrograms and their related data for 33 basic condensation polymers obtained by the thermally-assisted hydrolysis and methylation technique - All compiled data measured under the same experimental conditions for pyrolysis, gas chromatography and mass spectrometry to facilitate peak identification - Surveyable instant information on two facing pages dedicated to the whole data of a given polymer sample




Feedstock Recycling and Pyrolysis of Waste Plastics


Book Description

Pyrolysis is a recycling technique converting plastic waste into fuels, monomers, or other valuable materials by thermal and catalytic cracking processes. It allows the treatment of mixed, unwashed plastic wastes. For many years research has been carried out on thermally converting waste plastics into useful hydrocarbons liquids such as crude oil and diesel fuel. Recently the technology has matured to the point where commercial plants are now available. Pyrolysis recycling of mixed waste plastics into generator and transportation fuels is seen as the answer for recovering value from unwashed, mixed plastics and achieving their desired diversion from landfill. This book provides an overview of the science and technology of pyrolysis of waste plastics. It describes the types of plastics that are suitable for pyrolysis recycling, the mechanism of pyrolytic degradation of various plastics, characterization of the pyrolysis products and details of commercially mature pyrolysis technologies. This book also covers co-pyrolysis technology, including: waste plastic/waste oil, waste plastics/coal, and waste plastics/rubber.




Pyrolysis of Biomass for Fuels and Chemicals


Book Description

Pyrolysis of Biomass for Fuels and Chemicals provides a thorough overview of thermochemical conversion of biomass to fuels and chemicals via the pyrolysis platform. The book covers the principles underlying pyrolysis of biomass from the chemical engineering perspective. It discusses thermal-only pyrolysis, the traditional pyrolysis process under inert atmosphere with no catalyst, and the role of catalytic pyrolysis and tail gas reactive pyrolysis in resolving the instability issues associated with product distribution. The addresses condensed phase upgrading where the oil produced can be upgraded for stability or hydrogenated to drop-in transportation fuels, as well as feedstock selection, including opportunity fuels/feedstocks. Finally, pilot and demonstration scale projects from around the world are examined, and some immediate applications of pyrolysis oils in combustion systems are analyzed. Engineering researchers and professionals in the bioenergy, biochemical, and petrochemical fields find in this book a complete resource for understanding the relationships between possible technologies, applications, costs, and products value, as they tackle the challenges for large scale adoption of pyrolysis for the production of 2nd generation biofuels and biochemicals. PhD students in areas of energy, chemical, mechanical, and materials engineering will also benefit from fundamental and applied research in a concise format that can save them time and serve as a reference through bioenergy conversion courses.




Pyrolysis


Book Description

This book provides useful information about pyrolysis, which includes the pyrolysis of biomass and pyrolysis of fossil fuels and petrochemicals. Additionally, this book elucidates and illustrates further innovative pyrolysis processes such as catalytic pyrolysis, spray pyrolysis, and microwave-assisted pyrolysis. This book discusses the production of semiconductors and nanomaterials through the pyrolysis process.




Recent Advances in Pyrolysis


Book Description

Pyrolysis is an irreversible thermochemical treatment process of materials at elevated temperatures in an inert atmosphere. It is basically a carbonisation process where an organic material is decomposed to produce a solid residue with high (or higher) carbon content and some volatile products. The decomposition reactions are accompanied in general with polymerisation and isomerisation reactions. The end products of pyrolysis can be controlled by optimizing pyrolysis parameters such as temperature and residence time. Pyrolysis is used heavily in the chemical industry to produce many forms of carbon and other chemicals from petroleum, coal, wood, oil shale, biomass or organic waste materials, and it is the basis of several methods for producing fuel from biomass. Pyrolysis also is the process of conversion of buried organic matter into fossil fuels.




Pyrolysis of Organic Molecules


Book Description

Pyrolysis of Organic Molecules with Applications to Health and Environmental Issues, the 28th volume in the Techniques and Instrumentation in Analytical Chemistry series, gives a systematic and comprehensive description of pyrolysis of non-polymeric organic molecules. Pyrolysis is involved in many practical applications as well as in many common human activities, but harmful compounds can be generated in the process. The study of pyrolysis and of the formation of undesirable compounds as a result of pyrolytic processes is of considerable interest to chemists, chemical engineers, and toxicologists. - Pyrolysis results for compounds not previously studied or reported - Updated information from a large body of results published on pyrolysis of individual compounds or classes of compounds - Information on mechanisms and kinetics of numerous pyrolytic processes




Applied Pyrolysis Handbook


Book Description

Analytical pyrolysis allows scientists to use routine laboratory instrumentation for analyzing complex, opaque, or insoluble samples more effectively than other analytical techniques alone. Applied Pyrolysis Handbook, Second Edition is a practical guide to the application of pyrolysis techniques to various samples and sample types for a dive




Fast Pyrolysis of Biomass


Book Description

Fast pyrolysis and related catalytic pyrolysis are of increasing interest as pathways to advanced biofuels that closely mimic traditional petroleum products. Research has moved from empirical investigations to more fundamental studies of pyrolysis mechanisms. Theories on the chemical and physical pathways from plant polymers to pyrolysis products have proliferated as a result. This book brings together the latest developments in pyrolysis science and technology. It examines, reviews and challenges the unresolved and sometimes controversial questions about pyrolysis, helping advance the understanding of this important technology and stimulating discussion on the various competing theories of thermal deconstruction of plant polymers. Beginning with an introduction to the biomass-to-biofuels process via fast pyrolysis and catalytic pyrolysis, chapters address prominent questions such as whether free radicals or concerted reactions dominate deconstruction reactions. Finally, the book concludes with an economic analysis of fast pyrolysis versus catalytic pyrolysis. This book will be of interest to advanced students and researchers interested in the science behind renewable fuel technology, and particularly the thermochemical processing of biomass.