The Squid Giant Synapse


Book Description

The squid giant synapse is the single most important model for investigating the transmitter release mechanism in chemical junctions. This unique book, by a leading expert in the field, gives a concise overview of all that has been learned about synaptic transmission in this superb model system. It covers in detail the biophysics of the voltage-dependent calcium currents, calcium concentration microdomains, and much of the molecular basis for the triggering of the secretory event. Ideal for graduate and undergraduate courses, the book includes PC and Macintosh versions of two programs for simulating and manipulating any aspect of synaptic transmission. One program is a modeling tool designed for working neuroscientists, and the other teaches the basic principles of synaptic transmission by allowing students to alter the parameters, essentially without limits, and see the effects on the action potential over time. Anyone studying this central topic of neuroscience will find this book an invaluable resource.




Nonlinear Regression with R


Book Description

- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.




The CA3 Region of the Hippocampus: How is it? What is it for? How does it do it?


Book Description

The CA3 hippocampal region receives information from the entorhinal cortex either directly from the perforant path or indirectly from the dentate gyrus via the mossy fibers (MFs). According to their specific targets (principal/mossy cells or interneurons), MFs terminate with large boutons or small filopodial extensions, respectively. MF-CA3 synapses are characterized by a low probability of release and pronounced frequency-dependent facilitation. In addition MF terminals are endowed with mGluRs that regulate their own release. We will describe the intrinsic membrane properties of pyramidal cells, which can sometimes fire in bursts, together with the geometry of their dendritic arborization. The single layer of pyramidal cells is quite distinct from the six-layered neocortical arrangement. The resulting aligned dendrites provides the substrate for laminated excitatory inputs. They also underlie a precise, diversity of inhibitory control which we will also describe in detail. The CA3 region has an especially rich internal connectivity, with recurrent excitatory and inhibitory loops. In recent years both in vivo and in vitro studies have allowed to better understand functional properties of the CA3 auto-associative network and its role in information processing. This circuit is implicated in encoding spatial representations and episodic memories. It generates physiological population synchronies, including gamma, theta and sharp-waves that are presumed to associate firing in selected assemblies of cells in different behavioral conditions. The CA3 region is susceptible to neurodegeneration during aging and after stresses such as infection or injury. Loss of some CA3 neurones has striking effects on mossy fiber inputs and can facilitate the generation of pathologic synchrony within the CA3 micro-circuit. The aim of this special topic is to bring together experts on the cellular and molecular mechanisms regulating the wiring properties of the CA3 hippocampal microcircuit in both physiological and pathological conditions, synaptic plasticity, behavior and cognition.We will particularly emphasize the dual glutamatergic and GABAergic phenotype of MF-CA3 synapses at early developmental stages and the steps that regulate the integration of newly generated neurons into the adult dentate gyrus-CA3 circuit.




Density Functional Theory


Book Description

Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.




Aesthetic Experience


Book Description

Examines the notion of aesthetic experience as well as its value. This title brings together major voices that have directly theorised the concept of aesthetic experience or indirectly worked on topics connected to it.




Webvision


Book Description




Issues in Risk Assessment


Book Description

The scientific basis, inference assumptions, regulatory uses, and research needs in risk assessment are considered in this two-part volume. The first part, Use of Maximum Tolerated Dose in Animal Bioassays for Carcinogenicity, focuses on whether the maximum tolerated dose should continue to be used in carcinogenesis bioassays. The committee considers several options for modifying current bioassay procedures. The second part, Two-Stage Models of Carcinogenesis, stems from efforts to identify improved means of cancer risk assessment that have resulted in the development of a mathematical dose-response model based on a paradigm for the biologic phenomena thought to be associated with carcinogenesis.




Foundations of Cellular Neurophysiology


Book Description

with simulations and illustrations by Richard Gray Problem solving is an indispensable part of learning a quantitative science such as neurophysiology. This text for graduate and advanced undergraduate students in neuroscience, physiology, biophysics, and computational neuroscience provides comprehensive, mathematically sophisticated descriptions of modern principles of cellular neurophysiology. It is the only neurophysiology text that gives detailed derivations of equations, worked examples, and homework problem sets (with complete answers). Developed from notes for the course that the authors have taught since 1983, Foundations of Cellular Neurophysiology covers cellular neurophysiology (also some material at the molecular and systems levels) from its physical and mathematical foundations in a way that is far more rigorous than other commonly used texts in this area.




Handbook of Mathematical Geosciences


Book Description

This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.