Quantum Field Theory Demystified


Book Description

Learn quantum field theory relatively easily Trying to comprehend quantum field theory but don't have infinite time or the IQ of Einstein? No problem! This easy-to-follow guide helps you understand this complex subject matter without spending a lot of energy. Quantum Field Theory Demystified covers essential principles such as particle physics and special relativity. You'll learn about Lagrangian field theory, group theory, and electroweak theory. The book also explains continuous and discrete symmetries, spontaneous symmetry breaking, and supersymmetry. With thorough coverage of the mathematics of quantum field theory and featuring end-of-chapter quizzes and a final exam to test your knowledge, this book will teach you the fundamentals of this theoretical framework in no time at all. This fast and easy guide offers: Numerous figures to illustrate key concepts Sample equations with worked solutions Coverage of quantum numbers Details on the Dirac equation, the Feynman rules, and the Higgs mechanism A time-saving approach to performing better on an exam or at work Simple enough for a beginner, but challenging enough for an advanced student, Quantum Field Theory Demystified is your shortcut to understanding this fascinating area of physics.




String Theory Demystified


Book Description

UNRAVEL the mystery of STRING THEORY Trying to understand string theory but ending up with your brain in knots? Here's your lifeline! This straightforward guide explains the fundamental principles behind this cutting-edge concept. String Theory Demystified elucidates the goal of the theory--to combine general relativity and quantum theory into a single, unified framework. You'll learn about classical strings, conformal field theory, quantization, compactification, and T duality. The book covers supersymmetry and superstrings, D-branes, the holographic principle, and cosmology. Hundreds of examples and illustrations make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce learning. This fast and easy guide offers: Numerous figures to illustrate key concepts Sample problems with worked solutions Coverage of equations of motion, the energy-momentum tensor, and conserved currents A discussion of the Randall-Sundrum model A time-saving approach to performing better on an exam or at work Simple enough for a beginner, but challenging enough for an advanced student, String Theory Demystified is your key to comprehending this theory of everything.




Quantum Mechanics Demystified


Book Description

This clear, concise introduction to quantum mechanics is the perfect supplement and complement to the math-heavy texts that dominate the field. The author includes hundreds of worked examples to illustrate the processes discussed and Dirac's Method, explains how to obtain a desired result in familiar terms rather than with confusing terminology and formulas.




Quantum Field Theory and the Standard Model


Book Description

A modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.




Quantum Mechanics Demystified, 2nd Edition


Book Description

If you think projection operators work in the cinema, or learning about spin-1/2 makes your head, well, spin, Quantum Mechanics DeMYSTiFieD will energize your knowledge of this topic's fundamental concepts and theories, and allow you to learn at your own pace. This thoroughly revised and updated guide eases you into the subject, beginning with wave mechanics then introducing you to the mathematical foundations needed to do modern quantum physics. As you progress, you will learn the fundamentals of matrix mechanics, including how to compute the trace of a matrix, find eigenvalues, and use ladder operators. You will understand the difference between time independent perturbation and time dependent perturbation theory and other oncecomplicated concepts. Detailed examples make it easy to understand the material, and end-of-chapter quizzes and a final exam help reinforce key ideas. It's a no-brainer! You'll learn about: State Space Basis Vectors Functions of Operators The Postulates of Quantum Mechanics Angular Momentum Spin and the Pauli Matrices Scattering Theory Simple enough for a beginner, but challenging enough for an advanced student, Quantum Mechanics DeMYSTiFieD, Second Edition is your shortcut to a working knowledge of this engaging science.




Quantum Computing Explained


Book Description

A self-contained treatment of the fundamentals of quantum computing This clear, practical book takes quantum computing out of the realm of theoretical physics and teaches the fundamentals of the field to students and professionals who have not had training in quantum computing or quantum information theory, including computer scientists, programmers, electrical engineers, mathematicians, physics students, and chemists. The author cuts through the conventions of typical jargon-laden physics books and instead presents the material through his unique "how-to" approach and friendly, conversational style. Readers will learn how to carry out calculations with explicit details and will gain a fundamental grasp of: * Quantum mechanics * Quantum computation * Teleportation * Quantum cryptography * Entanglement * Quantum algorithms * Error correction A number of worked examples are included so readers can see how quantum computing is done with their own eyes, while answers to similar end-of-chapter problems are provided for readers to check their own work as they learn to master the information. Ideal for professionals and graduate-level students alike, Quantum Computing Explained delivers the fundamentals of quantum computing readers need to be able to understand current research papers and go on to study more advanced quantum texts.




A Modern Introduction to Quantum Field Theory


Book Description

The importance and the beauty of modern quantum field theory resides in the power and variety of its methods and ideas, which find application in domains as different as particle physics, cosmology, condensed matter, statistical mechanics and critical phenomena. This book introduces the reader to the modern developments in a manner which assumes no previous knowledge of quantum field theory. Along with standard topics like Feynman diagrams, the book discusses effective lagrangians, renormalization group equations, the path integral formulation, spontaneous symmetry breaking and non-abelian gauge theories. The inclusion of more advanced topics will also make this a most useful book for graduate students and researchers.




A First Book of Quantum Field Theory


Book Description

This book introduces QFT for readers with no prior knowledge of the subject. It is meant to be a textbook for advanced undergraduate or beginning postgraduate students. The book discusses quantization of fields, S-matrix theory, Feynman diagrams, calculation of decay rates and cross sections, renormalization, symmetries and symmetry breaking. Some background material on classical field theory and group theory, needed for the exposition, are also presented in the book. Detailed calculations of weak and electromagnetic processes are included. There are many exercise problems to help the students, instructors and beginning researchers in the field. The second edition improves upon some notations and explanations, and includes answers to selected exercises.




Quantum Field Theory


Book Description

This modern text combines fundamental principles with advanced topics and recent techniques in a rigorous and self-contained treatment of quantum field theory.Beginning with a review of basic principles, starting with quantum mechanics and special relativity, students can refresh their knowledge of elementary aspects of quantum field theory and perturbative calculations in the Standard Model. Results and tools relevant to many applications are covered, including canonical quantization, path integrals, non-Abelian gauge theories, and the renormalization group. Advanced topics are explored, with detail given on effective field theories, quantum anomalies, stable extended field configurations, lattice field theory, and field theory at a finite temperature or in the strong field regime. Two chapters are dedicated to new methods for calculating scattering amplitudes (spinor-helicity, on-shell recursion, and generalized unitarity), equipping students with practical skills for research. Accessibly written, with numerous worked examples and end-of-chapter problems, this is an essential text for graduate students. The breadth of coverage makes it an equally excellent reference for researchers.




Relativity Demystified


Book Description

In Relativity Demystified a physicist explains Einstein's theory of relativity in layman's terms, minus heavy-duty discussion or formal mathematics. Author David McMahon gradually builds up readers' practical skills to a point where they can eventually solve real problems in the field of general relativity. The book offers examples that vary in complexity from textbook-like problems to real-world situations from actual current research. Relativity Demystified also focused on quick definitions and demonstrations of procedures needed to solve problems.