Nonlinear Quantum Mechanics and Its Applications


Book Description

This book describes complete nonlinear quantum mechanics, in which the fundamental and necessity theoretical principle and wave-corpuscle duality of microscopic particles were the foundation of this principle and its experimental evidences, the mechanisms of generation of the nonlinear interactions and its effects, as well as the methods solving nonlinear quantum mechanical problems, its distinctions with linear quantum mechanics and early nonlinear quantum mechanical idea and models, the completeness and correctness and universality of new theory as well as its applications in different systems containing polymers, physical and biological systems, which are exhibited in this book. Plenty of interesting results of these systems and a large number of novel properties of microscopic particles including the electron, proton, phonon, photon, exciton, polaron, magnon and Boson involving their localisations and classical features are stated in detail. This book is intended for researchers, teachers, graduate students, and upper level undergraduate students.




Quantum Mechanics in Nonlinear Systems


Book Description

In the history of physics and science, quantum mechanics has served as the foundation of modern science. This book discusses the properties of microscopic particles in nonlinear systems, principles of the nonlinear quantum mechanical theory, and its applications in condensed matter, polymers and biological systems.The book is essentially composed of three parts. The first part presents a review of linear quantum mechanics, as well as theoretical and experimental fundamentals that establish the nonlinear quantum mechanical theory. The theory itself and its essential features are covered in the second part. In the final part, extensive applications of this theory in physics, biology and polymer are introduced. The whole volume forms a complete system of nonlinear quantum mechanics.The book is intended for researchers, graduate students as well as upper-level undergraduates.




Quantum Theory from a Nonlinear Perspective


Book Description

This book provides a unique survey displaying the power of Riccati equations to describe reversible and irreversible processes in physics and, in particular, quantum physics. Quantum mechanics is supposedly linear, invariant under time-reversal, conserving energy and, in contrast to classical theories, essentially based on the use of complex quantities. However, on a macroscopic level, processes apparently obey nonlinear irreversible evolution equations and dissipate energy. The Riccati equation, a nonlinear equation that can be linearized, has the potential to link these two worlds when applied to complex quantities. The nonlinearity can provide information about the phase-amplitude correlations of the complex quantities that cannot be obtained from the linearized form. As revealed in this wide ranging treatment, Riccati equations can also be found in many diverse fields of physics from Bose-Einstein-condensates to cosmology. The book will appeal to graduate students and theoretical physicists interested in a consistent mathematical description of physical laws.




Nonlinear Dynamics and Quantum Chaos


Book Description

The field of nonlinear dynamics and chaos has grown very much over the last few decades and is becoming more and more relevant in different disciplines. This book presents a clear and concise introduction to the field of nonlinear dynamics and chaos, suitable for graduate students in mathematics, physics, chemistry, engineering, and in natural sciences in general. It provides a thorough and modern introduction to the concepts of Hamiltonian dynamical systems' theory combining in a comprehensive way classical and quantum mechanical description. It covers a wide range of topics usually not found in similar books. Motivations of the respective subjects and a clear presentation eases the understanding. The book is based on lectures on classical and quantum chaos held by the author at Heidelberg University. It contains exercises and worked examples, which makes it ideal for an introductory course for students as well as for researchers starting to work in the field.




The Quantum Theory of Nonlinear Optics


Book Description

This self-contained treatment of field quantization requires no prior knowledge of nonlinear optics. Supplemented by end-of-chapter exercises and detailed examples of calculation techniques in different systems, it is a valuable resource for graduate students and researchers in nonlinear optics, condensed matter physics, quantum information and atomic physics.




Non-Linear Cooperative Effects in Open Quantum Systems


Book Description

This monograph, "Non-linear Cooperative Effects in Open Quantum Systems: Entanglement and Second Order Coherence" is dedicated to the large auditory of specialists interested in the modern approaches in quantum open systems, cooperative phenomena between excited atoms and the field of the non-linear interaction. Special attention is dedicated to the problems of non-linear interaction with vacuum fields and thermostat with finite temperature, but quantum aspects of laser generation of light in non-linear interaction with finite numbers of cavity modes remain the center of attention. In many situations, the limit to the traditional cooperative phenomena of open quantum systems and thermodynamics are taken into consideration. As the book contains the class of non-linear effects of generations of the particle in such cooperative phenomena, the author's aim was to describe squeezed problems and affect entanglement between the generation photons and phonons in cooperative processes. The new phenomenon of cooperative emission in the single- and two-quantum processes are carefully described for large audiences of specialists in the field of quantum optics and condensed matter physics, chemistry and biology.




The Mechanics of Nonlinear Systems with Internal Resonances


Book Description

One of the most important features of nonlinear systems with several degrees of freedom is the presence of internal resonances at certain relations between natural frequencies of different modes. This monograph is the first book devoted predominantly to internal resonances in different mechanical systems including those of practical importance.The main purpose is to consider the internal resonances from the general point of view and to elucidate their role in applied nonlinear dynamics by using an efficient approach based on introducing the complex representation of equations of motion (together with the multiple scale method). Considered here are autonomous and nonautonomous discrete two-degree-of-freedom systems, infinite chains of particles, and continuous systems, including circular rings and cylindrical shells. Specific attention is paid to the case of one-to-one internal resonance in systems with cubic nonlinearities. Steady-state and nonstationary regimes of motion, interaction of the internal and external resonances at forced oscillations, and bifurcations of steady-state modes and their stability are systematically studied.




Quantum Mechanics of Non-Hamiltonian and Dissipative Systems


Book Description

Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is self-contained and can be used by students without a previous course in modern mathematics and physics. The book describes the modern structure of the theory, and covers the fundamental results of last 15 years. The book has been recommended by Russian Ministry of Education as the textbook for graduate students and has been used for graduate student lectures from 1998 to 2006.• Requires no preliminary knowledge of graduate and advanced mathematics • Discusses the fundamental results of last 15 years in this theory• Suitable for courses for undergraduate students as well as graduate students and specialists in physics mathematics and other sciences




Classical And Quantum Field Theory Of Exactly Soluble Nonlinear Systems


Book Description

Contents:Nonlinear Problems in 1 + 1 and Their LinearizationClassical Field Theory ModelsHamiltonian Formulation, Action-Angle Variables, Solitons, Classical Lattice Models and Lattice Approximants of Classical FieldsQuantization on a Lattice: Relationship Classical-QuantumQuantization on a Lattice: Simple Bose ModelsSpin 1/2 Lattice Systems Related to Nonlinear Bose Problems: Lattice FermionsQuantization in Continuum: Joint Bose-Fermi Spectral Problems in 1 + 1Quantum Meaning of Classical Field Theory for Fermi SystemsOn Infinite Constituent “Elementary” Systems: Canonical (Constituent) Quantization of Soliton FieldsTowards 1 + 3: Problems and Prospects Readership: Mathematical physicists and physicists. Keywords:Nonlinear Fields;Integrability;Solvable Models;Solitons;Continuum and Lattice Models;Quantization;Fermi Fields And Their Classical Counterparts;Relationship Classical-Quantum;Boson-Fermion Reciprocity (Bosonization)




Non-Hermitian Quantum Mechanics


Book Description

Non-Hermitian quantum mechanics (NHQM) is an important alternative to the standard (Hermitian) formalism of quantum mechanics, enabling the solution of otherwise difficult problems. The first book to present this theory, it is useful to advanced graduate students and researchers in physics, chemistry and engineering. NHQM provides powerful numerical and analytical tools for the study of resonance phenomena - perhaps one of the most striking events in nature. It is especially useful for problems whose solutions cause extreme difficulties within the structure of a conventional Hermitian framework. NHQM has applications in a variety of fields, including optics, where the refractive index is complex; quantum field theory, where the parity-time (PT) symmetry properties of the Hamiltonian are investigated; and atomic and molecular physics and electrical engineering, where complex potentials are introduced to simplify numerical calculations.




Recent Books