Problems and Solutions in Quantum Chemistry and Physics


Book Description

Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.




Quantum Physics And Modern Applications: Problems And Solutions


Book Description

This book is written with the view of providing learners a fast track into the modern applications of quantum physics. It is designed as a book of Problems and Solutions, consisting of more than 200 exercises with explicitly worked out solutions.Focusing on modern research topics, the problems are designed to suit recent developments such as graphene, topological materials, spintronics, and quantum computation and information (QCI). Categorized into eight chapters, the book first introduces QM for undergraduates with an emphasis on the Dirac formalism and its representation in the form of matrices and functions. Chapter 2 is dedicated to spin physics, where the spinor formalism is increasingly relevant to research on spintronics, graphene, topological systems, Dirac, Weyl, and all branches of quantum information sciences. Chapter 3 deals with second quantization and its applications in nanoscience and condensed matter physics. Building on the foundations of the previous two chapters, Chapter 4 expounds on the non-equilibrium Green's Function (NEGF) — a modern topic with problems designed to suit applications in nanoscale electronic and spintronics systems. Chapter 5 covers gauge fields and topology, with a modern emphasis on applications in new materials such as graphene and topological systems. Chapter 6 comprises numerous advanced sub-topics in condensed matter physics as well as conventional topics such as band structures and entanglement entropy. Chapter 7 extends to cross-disciplinary and miscellaneous physics, where the topics are not necessarily quantum by nature, but deal with issues that have inspired the development of quantum mechanics and quantum fields. Lastly, the book caters to quantum computation with a preamble on the QM foundations of spin, projection, measurement and density matrices which underpin applications in quantum gates, quantum teleportation and entanglement.Readers can expect a handy and effective guide in mastering problem solving techniques in frontier applications of quantum physics.




A Modern Approach to Quantum Mechanics


Book Description

Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics allows lecturers to expose their undergraduates to Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new. Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems it gives students straightfoward examples of the structure of quantum mechanics. When wave mechanics is introduced later, students should perceive it correctly as only one aspect of quantum mechanics and not the core of the subject.




Introduction to Modern Physics


Book Description

Our understanding of the physical world was revolutionized in the twentieth century — the era of “modern physics”. The book Introduction to Modern Physics: Theoretical Foundations, aimed at the very best students, presents the foundations and frontiers of today's physics. Typically, students have to wade through several courses to see many of these topics. The goal is to give them some idea of where they are going, and how things fit together, as they go along. The book focuses on the following topics: quantum mechanics; applications in atomic, nuclear, particle, and condensed-matter physics; special relativity; relativistic quantum mechanics, including the Dirac equation and Feynman diagrams; quantum fields; and general relativity. The aim is to cover these topics in sufficient depth that things “make sense” to students, and they achieve an elementary working knowledge of them. The book assumes a one-year, calculus-based freshman physics course, along with a one-year course in calculus. Several appendices bring the reader up to speed on any additional required mathematics. Many problems are included, a great number of which take dedicated readers just as far as they want to go in modern physics. The present book provides solutions to the over 175 problems in Introduction to Modern Physics: Theoretical Foundations in what we believe to be a clear and concise fashion.




Advanced Quantum Mechanics


Book Description

This book covers advanced topics in quantum mechanics, including nonrelativistic multi-particle systems, relativistic wave equations, and relativistic fields. Numerous examples for application help readers gain a thorough understanding of the subject. The presentation of relativistic wave equations and their symmetries, and the fundamentals of quantum field theory lay the foundations for advanced studies in solid-state physics, nuclear, and elementary particle physics. The authors earlier book, Quantum Mechanics, was praised for its unsurpassed clarity.




The Quantum Mechanics Solver


Book Description

The Quantum Mechanics Solver is unique as it illustrates the application of quantum mechanical concepts to various fields of modern physics. It aims at encouraging the reader to apply quantum mechanics to research problems in fields such as molecular physics, condensed matter physics or laser physics. Advanced undergraduates and graduate students will find a rich and challenging source of material for further exploration.




Quantum Mechanics


Book Description

Quantum Mechanics: Concepts and Applications provides a clear, balanced and modern introduction to the subject. Written with the student’s background and ability in mind the book takes an innovative approach to quantum mechanics by combining the essential elements of the theory with the practical applications: it is therefore both a textbook and a problem solving book in one self-contained volume. Carefully structured, the book starts with the experimental basis of quantum mechanics and then discusses its mathematical tools. Subsequent chapters cover the formal foundations of the subject, the exact solutions of the Schrödinger equation for one and three dimensional potentials, time-independent and time-dependent approximation methods, and finally, the theory of scattering. The text is richly illustrated throughout with many worked examples and numerous problems with step-by-step solutions designed to help the reader master the machinery of quantum mechanics. The new edition has been completely updated and a solutions manual is available on request. Suitable for senior undergradutate courses and graduate courses.




Formulation and Numerical Solution of Quantum Control Problems


Book Description

This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??




Lectures on Quantum Mechanics


Book Description

Beautifully illustrated and engagingly written, Twelve Lectures in Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant’s style is clear and stimulating, in the manner of a brisk lecture that can be followed with ease and enjoyment. Here is a sample of the book’s style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be ‘E = mc2’.... There is no way around it: all physics is quantum, from elementary particles, to stellar physics and the Big Bang, not to mention semiconductors and solar cells."




Exploring Quantum Mechanics


Book Description

A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.