Quantum Questions


Book Description

The mystical writings of the world’s great physicists—now in one eye-opening volume that bridges the gap between science and religion Quantum Questions collects the mystical writings of each of the major physicists involved in the discovery of quantum physics and relativity, including Albert Einstein, Werner Heisenberg, and Max Planck. The selections are written in nontechnical language and will be of interest to scientists and nonscientists alike.




101 Quantum Questions


Book Description

Ken Ford’s mission is to help us understand the “great ideas” of quantum physics—ideas such as wave-particle duality, the uncertainty principle, superposition, and conservation. These fundamental concepts provide the structure for 101 Quantum Questions, an authoritative yet engaging book for the general reader in which every question and answer brings out one or more basic features of the mysterious world of the quantum—the physics of the very small. Nuclear researcher and master teacher, Ford covers everything from quarks, quantum jumps, and what causes stars to shine, to practical applications ranging from lasers and superconductors to light-emitting diodes. Ford’s lively answers are enriched by Paul Hewitt's drawings, numerous photos of physicists, and anecdotes, many from Ford’s own experience. Organized for cover-to-cover reading, 101 Quantum Questions also is great for browsing. Some books focus on a single subject such as the standard model of particles, or string theory, or fusion energy. This book touches all those topics and more, showing us that disparate natural phenomena, as well as a host of manmade inventions, can be understood in terms of a few key ideas. Yet Ford does not give us simplistic explanations. He assumes a serious reader wanting to gain real understanding of the essentials of quantum physics. Ken Ford's other books include The Quantum World: Quantum Physics for Everyone (Harvard 2004), which Esquire magazine recommended as the best way to gain an understanding of quantum physics. Ford's new book, a sequel to the earlier one, makes the quantum world even more accessible.




Islam's Quantum Question


Book Description

In secular Europe the veracity of modern science is almost always taken for granted. Whether they think of the evolutionary proofs of Darwin or of spectacular investigation into the boundaries of physics conducted by CERN's Large Hadron Collider, most people assume that scientific enquiry goes to the heart of fundamental truths about the universe. Yet elsewhere, science is under siege. In the USA, Christian fundamentalists contest whether evolution should be taught in schools at all. And in Muslim countries like Tunisia, Egypt, Pakistan and Malaysia, a mere 15 per cent of those recently surveyed believed Darwin's theory to be 'true' or 'probably true'. This thoughtful and passionately argued book contends absolutely to the contrary: not only that evolutionary theory does not contradict core Muslim beliefs, but that many scholars, from Islam's golden age to the present, adopted a worldview that accepted evolution as a given. Guessoum suggests that the Islamic world, just like the Christian, needs to take scientific questions - 'quantum questions' - with the utmost seriousness if it is to recover its true heritage and integrity. In its application of a specifically Muslim perspective to important topics like cosmology, divine action and evolution, the book makes a vital contribution to debate in the disputed field of 'science and religion'.




Problems in Quantum Mechanics


Book Description

A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. An ideal adjunct to any textbook in quantum mechanics.




Open Questions in Quantum Physics


Book Description

Due to its extraordinary predictive power and the great generality of its mathematical structure, quantum theory is able, at least in principle, to describe all the microscopic and macroscopic properties of the physical world, from the subatomic to the cosmological level. Nevertheless, ever since the Copen hagen and Gottingen schools in 1927 gave it the definitive formu lation, now commonly known as the orthodox interpretation, the theory has suffered from very serious logical and epistemologi cal problems. These shortcomings were immediately pointed out by some of the principal founders themselves of quantum theory, to wit, Planck, Einstein, Ehrenfest, Schrodinger, and de Broglie, and by the philosopher Karl Popper, who assumed a position of radical criticism with regard to the standard formulation of the theory. The aim of the participants in the workshop on Open Questions in Quantum Physics, which was held in Bari (Italy), in the Department of Physics of the University, during May 1983 and whose Proceedings are collected in the present volume, accord ingly was to discuss the formal, the physical and the epistemo logical difficulties of quantum theory in the light of recent crucial developments and to propose some possible resolutions of three basic conceptual dilemmas, which are posed respectively ~: (a) the physical developments of the Einstein-Podolsky-Rosen argument and Bell's theorem, i. e.




Nothing I See Means Anything


Book Description

If you want a hundred sound reasons to open your heart to the Divine, READ THIS BOOK.




Exploring Quantum Mechanics


Book Description

A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collected over about 60 years, first by the lead author, the late Prof. Victor Galitski, Sr. Over the years, new problems were added and the material polished by Prof. Boris Karnakov. Finally, Prof. Victor Galitski, Jr., has extended the material with new problems particularly relevant to modern science.




Problems in Quantum Mechanics


Book Description

Many students find quantum mechanics conceptually difficult when they first encounter the subject. In this book, the postulates and key applications of quantum mechanics are well illustrated by means of a carefully chosen set of problems, complete with detailed, step-by-step solutions. Beginning with a chapter on orders of magnitude, a variety of topics are then covered, including the mathematical foundations of quantum mechanics, Schrödinger's equation, angular momentum, the hydrogen atom, the harmonic oscillator, spin, time-independent and time-dependent perturbation theory, the variational method, multielectron atoms, transitions and scattering. Throughout, the physical interpretation or application of certain results is highlighted, thereby providing useful insights into a wide range of systems and phenomena. This approach will make the book invaluable to anyone taking an undergraduate course in quantum mechanics.




What Is Real?


Book Description

"A thorough, illuminating exploration of the most consequential controversy raging in modern science." --New York Times Book Review An Editor's Choice, New York Times Book Review Longlisted for PEN/E.O. Wilson Prize for Literary Science Writing Longlisted for Goodreads Choice Award Every physicist agrees quantum mechanics is among humanity's finest scientific achievements. But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's solipsistic and poorly reasoned Copenhagen interpretation. Indeed, questioning it has long meant professional ruin, yet some daring physicists, such as John Bell, David Bohm, and Hugh Everett, persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and the courageous scientists who dared to stand up for truth. "An excellent, accessible account." --Wall Street Journal "Splendid. . . . Deeply detailed research, accompanied by charming anecdotes about the scientists." --Washington Post




Beyond Weird


Book Description

“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.