Quarks, Leptons and The Big Bang


Book Description

Quarks, Leptons and The Big Bang is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will be of interest to students, teachers and general science readers interested in fundamental ideas of modern physics.




Quarks, Leptons and the Big Bang


Book Description

CHOICE: Highly Recommended Quarks, Leptons and The Big Bang, Third Edition, is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will appeal to students, teachers and general science readers interested in fundamental ideas of modern physics. This edition brings the book completely up to date by including advances in particle physics and cosmology, such as the discovery of the Higgs boson, the LIGO gravitational wave discovery and the WMAP and PLANCK results.




Understanding the Universe


Book Description

A Scientific Introduction to Subatomic particles, Alien Intelligence, and Human Space Exploration (For the Cosmically Curious): There are many fundamental questions about the universe that have intrigued scientists, philosophers, and ordinary people for centuries. Here are a few of them: What is the universe made of? This is one of the most basic questions about the universe. Scientists have identified a number of different types of matter and energy, including atoms, subatomic particles, dark matter, and dark energy, but there is still much we don't know. How did the universe begin? The origin of the universe is a subject of intense study and debate. The prevailing theory is the Big Bang, which suggests that the universe began as a singularity and has been expanding ever since. What is the ultimate fate of the universe? Will it keep on expanding indefinitely or will it ultimately come to an end? Some theories suggest that the universe may end in a "big rip" or a "big crunch," while others suggest that it will continue to expand indefinitely. What is the nature of space and time? These are fundamental concepts that are still not fully understood. Some theories suggest that space and time are intertwined and that they can be distorted by the presence of matter and energy. Are there other universes beyond our own? Some theories suggest that our universe may be just one of many in a "multiverse." Although this theory is yet hypothetical, it is a fascinating concept that could have significant ramifications for our comprehension of the cosmos. These are just a few of the many fundamental questions about the universe that scientists and philosophers continue to explore. "Understanding the Universe: Quarks, Leptons and the Big Bang" is a comprehensive exploration of the fundamental principles that govern the universe we live in. From the tiniest particles to the grandest structures in the cosmos, this book takes readers on a journey of discovery through the mysteries of modern physics and cosmology. Starting with an introduction to the basic building blocks of matter, the book delves into the strange world of quarks and leptons, exploring their properties and interactions. It then examines the forces that govern the behavior of matter, including the strong and weak nuclear forces, electromagnetism, and gravity. The book also covers the history of the universe, from its origins in the Big Bang to the present day, and discusses the evolution of stars and galaxies. Readers will gain a deep understanding of the structure of the universe, its expansion, and the mysterious dark matter and dark energy that make up the vast majority of its mass. Filled with engaging examples, clear explanations, and fascinating insights, "Understanding the Universe: Quarks, Leptons and the Big Bang" is a must-read for anyone interested in the inner workings of the cosmos. Whether you're a student of physics, a science enthusiast, or simply curious about the universe, this book will provide you with a solid foundation for understanding the world around us.




Quarks, Leptons and The Big Bang, Second Edition


Book Description

Quarks, Leptons and The Big Bang is a clear, readable and self-contained introduction to particle physics and related areas of cosmology. It bridges the gap between non-technical popular accounts and textbooks for advanced students. The book concentrates on presenting the subject from the modern perspective of quarks, leptons and the forces between them. This book will be of interest to students, teachers and general science readers interested in fundamental ideas of modern physics.




Understanding The Universe: From Quarks To Cosmos (Revised Edition)


Book Description

The Big Bang, the birth of the universe, was a singular event. All of the matter of the universe was concentrated at a single point, with temperatures so high that even the familiar protons and neutrons of atoms did not yet exist, but rather were replaced by a swirling maelstrom of energy, matter and antimatter. Exotic quarks and leptons flickered briefly into existence, before merging back into the energy sea.This book explains the fascinating world of quarks and leptons and the forces that govern their behavior. Told from an experimental physicist's perspective, it forgoes mathematical complexity, using instead particularly accessible figures and apt analogies. In addition to the story of quarks and leptons, which are regarded as well-accepted fact, the author (who is a leading researcher at one of the world's highest energy particle physics laboratories) also discusses mysteries at both the experimental and theoretical frontiers, before tying it all together with the exciting field of cosmology and indeed the birth of the universe itself.The text spans the tiny world of the quark to the depths of the universe with breathtaking clarity. The casual student of science will appreciate the careful distinction between what is known (quarks, leptons and antimatter), what is suspected (Higgs bosons, neutrino oscillations and the reason why the universe has so little antimatter) and what is merely dreamed (supersymmetry, superstrings and extra dimensions). Included is an unprecedented chapter explaining the accelerators and detectors of modern particle physics experiments. The chapter discussing the hunt for the Higgs boson — currently consuming the efforts of nearly 6000 physicists — reveals drama that only big-stakes science can give. Understanding the Universe leaves the reader with a deep appreciation of the fascinating particle realm and reverence for just how much it determines the rich beauty of our universe.Since the release of the first edition, the landscape has changed. The venerable Fermilab Tevatron has ceased operations after a quarter century of extraordinary performance, to be replaced by the CERN Large Hadron Collider, an accelerator with a design energy of seven times greater than the Tevatron and a collision rate of nearly a billion collisions per second. The next few years promise to be very exciting as scientists explore this new realm. This revised edition of Understanding the Universe will leave the reader with a deep appreciation of just why physicists are so excited.




Understanding the Universe


Book Description

This book explains the fascinating world of quarks and leptons and the forces that govern their behavior. Told from an experimental physicist's perspective, it forgoes mathematical complexity, using instead particularly accessible figures and apt analogies. In addition to the story of quarks and leptons, which are regarded as well-accepted fact, the author (who is a leading researcher at one of the world's highest energy particle physics laboratories) also discusses mysteries at both the experimental and theoretical frontiers, before tying it all together with the exciting field of cosmology and indeed the birth of the universe itself.




It's All Elementary


Book Description

Traces the search leading to the discovery of the smallest bits of matter, pieces too small to be subdivided, and discusses recent developments in the field of particle physics, or study of the invisible microworld of elementary particles.




Quark-Gluon Plasma


Book Description

Quark-Gluon Plasma introduces the primordial matter, composed of two types of elementary particles, created at the time of the Big Bang. During the evolution of the universe, Quark-Gluon Plasma (QGP) undergoes a transition to hadronic matter governed by quantum chromodynamics, the law of strong interactions. After an introduction to gauge theories, various aspects of quantum chromodynamic phase transitions are illustrated in a self-contained manner. The cosmological approach and renormalization group are discussed, as well as the cosmological and astrophysical implications of QGP, on the basis of Einstein's equations. Recent developments towards the formation of QGP in ultrarelativistic heavy ion collisions are also presented in detail. This text is suitable as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. It includes eight appendices and over a hundred exercises.




Quarks, Leptons, and Beyond


Book Description

The ASI Quarks, Leptons and Beyond, held in Munich from the 5th to the 16th of September 1983 was dedicated to the study of what we now believe are the fundamental building blocks of nature: quarks and leptons. The subject was approached on two levels. On the one hand, a thorough discussion was given of the status of our knowledge of quarks and leptons and their interactions, both from an experi mental and a theoretical standpoint. On the other hand, open problems presented by the so called standard model of quark and lepton interact ions were explored along various ways that lead one beyond this frame work. One of the principal predictions of the standard model is that weak interactions are mediated by heavy Wand Z vector bosons. These particles were discovered in 1983 at CERN and their relevant proper ties were discussed at the ASI by C. Rubbia. Further theoretical predictions concerning these Z and W bosons, yet to be checked by future experimentation, were discussed by G. Altarelli with a view of seeing where the standard model might fail and new physics ensue. The strong interactions of quarks, based on Quantum Chromodynamics (QeD), are presumed to cause the quarks to bind into hadrons. Pro gress in attempts to calculate the observed hadronic spectrum, ab initio, starting from QCD and employing lattice methods were reviewed at the ASI by P. Hasenfratz.




The Universe and the Atom


Book Description

This is a fascinating and popular account of the very large and the very small, from the universe as a whole to subatomic physics. It includes qualitative explanations of quantum mechanics and relativity, the big bang with inflation, the synthesis of elements, atoms, nuclei, subnuclear physics, quarks, leptons, and other elementary particles. It also gives an account of dark matter and dark energy. In summary, it provides and overview of what we know about the universe and what it is made of, and also what we don't know.