Quickest Detection


Book Description

The problem of detecting abrupt changes in the behavior of an observed signal or time series arises in a variety of fields, including climate modeling, finance, image analysis, and security. Quickest detection refers to real-time detection of such changes as quickly as possible after they occur. Using the framework of optimal stopping theory, this book describes the fundamentals underpinning the field, providing the background necessary to design, analyze, and understand quickest detection algorithms. For the first time the authors bring together results which were previously scattered across disparate disciplines, and provide a unified treatment of several different approaches to the quickest detection problem. This book is essential reading for anyone who wants to understand the basic statistical procedures for change detection from a fundamental viewpoint, and for those interested in theoretical questions of change detection. It is ideal for graduate students and researchers of engineering, statistics, economics, and finance.




Sequential Change Detection and Hypothesis Testing


Book Description

Statistical methods for sequential hypothesis testing and changepoint detection have applications across many fields, including quality control, biomedical engineering, communication networks, econometrics, image processing, security, etc. This book presents an overview of methodology in these related areas, providing a synthesis of research from the last few decades. The methods are illustrated through real data examples, and software is referenced where possible. The emphasis is on providing all the theoretical details in a unified framework, with pointers to new research directions.




Optimal Stopping and Free-Boundary Problems


Book Description

This book discloses a fascinating connection between optimal stopping problems in probability and free-boundary problems. It focuses on key examples and the theory of optimal stopping is exposed at its basic principles in discrete and continuous time covering martingale and Markovian methods. Methods of solution explained range from change of time, space, and measure, to more recent ones such as local time-space calculus and nonlinear integral equations. A chapter on stochastic processes makes the material more accessible. The book will appeal to those wishing to master stochastic calculus via fundamental examples. Areas of application include financial mathematics, financial engineering, and mathematical statistics.




Sequential Analysis


Book Description

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book primarily focuses on practical discrete-time models, with certain continuous-time models also examined when general results can be obtained very similarly in both cases. It treats both conventional i.i.d. and general non-i.i.d. stochastic models in detail, including Markov, hidden Markov, state-space, regression, and autoregression models. Rigorous proofs are given for the most important results. Written by leading authorities in the field, this book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It explains how the theoretical aspects influence the hypothesis testing and changepoint detection problems as well as the design of algorithms.




Principles of Cognitive Radio


Book Description

Expert authors draw on fundamental theory to explain the core principles and key design considerations for developing cognitive radio systems.




Statistics and Control of Random Processes


Book Description

This book contains papers by participants in two seminars, one on martingales and statistics of stochastic processes, and one on sequential analysis, both of which were held at the Steklov Institute of the Russian Academy of Sciences. The papers develop the concepts of martingales and seminmartingales and stochastic calculus for them, as well as their applications in statistics and control of stochastic processes. The class of semimartingales - that is, the class of all processes which can be represented as a sum of a martingale and a process with bounded variation - is rather large. It contains such important processes as Brownian motion, Poisson processes, solutions of stochastic differential equations, and others. The papers treat theoretical aspects of statistics of stochastic processes as well as specific models of stochastic processes from the standpoint of their statistics and control. The collection is intended for undergraduate and graduate students and researchers in probability theory and mathematical statistics.




Partially Observed Markov Decision Processes


Book Description

This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.




Sequential Analysis


Book Description

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detecti




Advanced Data Analytics for Power Systems


Book Description

Experts in data analytics and power engineering present techniques addressing the needs of modern power systems, covering theory and applications related to power system reliability, efficiency, and security. With topics spanning large-scale and distributed optimization, statistical learning, big data analytics, graph theory, and game theory, this is an essential resource for graduate students and researchers in academia and industry with backgrounds in power systems engineering, applied mathematics, and computer science.




Stochastic Models, Statistics and Their Applications


Book Description

This volume presents selected and peer-reviewed contributions from the 14th Workshop on Stochastic Models, Statistics and Their Applications, held in Dresden, Germany, on March 6-8, 2019. Addressing the needs of theoretical and applied researchers alike, the contributions provide an overview of the latest advances and trends in the areas of mathematical statistics and applied probability, and their applications to high-dimensional statistics, econometrics and time series analysis, statistics for stochastic processes, statistical machine learning, big data and data science, random matrix theory, quality control, change-point analysis and detection, finance, copulas, survival analysis and reliability, sequential experiments, empirical processes, and microsimulations. As the book demonstrates, stochastic models and related statistical procedures and algorithms are essential to more comprehensively understanding and solving present-day problems arising in e.g. the natural sciences, machine learning, data science, engineering, image analysis, genetics, econometrics and finance.